Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Ann Rheum Dis ; 82(11): 1444-1454, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37567607

RESUMO

OBJECTIVES: Reactivation of anergic autoreactive B cells (BND cells) is a key aetiological process in systemic lupus erythematosus (SLE), yet the underlying mechanism remains largely elusive. This study aimed to investigate how BND cells participate in the pathogenesis of SLE and the underlying mechanism. METHODS: A combination of phenotypical, large-scale transcriptome and B cell receptor (BCR) repertoire profiling were employed at molecular and single cell level on samples from healthy donors and patients with SLE. Isolated naïve B cells from human periphery blood were treated with anti-CD79b mAb in vitro to induce anergy. IgM internalisation was tracked by confocal microscopy and was qualified by flow cytometer. RESULTS: We characterised the decrease and disruption of BND cells in SLE patients and demonstrated IL-4 as an important cytokine to drive such pathological changes. We then elucidated that IL-4 reversed B cell anergy by promoting BCR recycling to the cell surface via STAT6 signalling. CONCLUSIONS: We demonstrated the significance of IL-4 in reversing B cell anergy and established the scientific rationale to treat SLE via blocking IL-4 signalling, also providing diagnostic and prognostic biomarkers to identify patients who are most likely going to benefit from such treatments.

2.
Proc Natl Acad Sci U S A ; 117(26): 15148-15159, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541028

RESUMO

The potency of adoptive T cell therapies targeting the cell surface antigen CD19 has been demonstrated in hematopoietic cancers. It has been difficult to identify appropriate targets in nonhematopoietic tumors, but one class of antigens that have shown promise is aberrant O-glycoprotein epitopes. It has long been known that dysregulated synthesis of O-linked (threonine or serine) sugars occurs in many cancers, and that this can lead to the expression of cell surface proteins containing O-glycans comprised of a single N-acetylgalactosamine (GalNAc, known as Tn antigen) rather than the normally extended carbohydrate. Previously, we used the scFv fragment of antibody 237 as a chimeric antigen receptor (CAR) to mediate recognition of mouse tumor cells that bear its cognate Tn-glycopeptide epitope in podoplanin, also called OTS8. Guided by the structure of the 237 Fab:Tn-OTS8-glycopeptide complex, here we conducted a deep mutational scan showing that residues flanking the Tn-glycan contributed significant binding energy to the interaction. Design of 237-scFv libraries in the yeast display system allowed us to isolate scFv variants with higher affinity for Tn-OTS8. Selection with a noncognate human antigen, Tn-MUC1, yielded scFv variants that were broadly reactive with multiple Tn-glycoproteins. When configured as CARs, engineered T cells expressing these scFv variants showed improved activity against mouse and human cancer cell lines defective in O-linked glycosylation. This strategy provides CARs with Tn-peptide specificities, all based on a single scFv scaffold, that allows the same CAR to be tested for toxicity in mice and efficacy against mouse and human tumors.


Assuntos
Antígenos Glicosídicos Associados a Tumores/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/fisiologia , Sequência de Aminoácidos , Animais , Anticorpos , Linhagem Celular Tumoral , Evolução Molecular Direcionada , Epitopos/genética , Humanos , Camundongos , Modelos Moleculares , Mutação , Conformação Proteica , Receptores de Antígenos Quiméricos/genética
3.
Matter ; 4(12): 3917-3940, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34901832

RESUMO

Although chimeric antigen receptor (CAR) T-cell therapy has transformed cancer treatment, high-quality and universal CAR-staining reagents are urgently required to manufacture CAR T cells, predict therapy response, decipher CAR biology, and engineer new CARs. Here, we developed tetrameric and dodecameric forms of a multifunctional and extensible category of high-avidity CAR-staining reagents: antigen-multimers. Antigen-multimers detected CARs against CD19, HER2, and Tn-glycoside with significantly higher specificity, sensitivity, and precision than existing reagents. In addition to accurate CAR T-cell detection by flow cytometry, antigen-multimers also enabled ≥100-fold magnetic enrichment of rare CAR T cells, selective CAR T-cell stimulation, and high-dimensional CAR T-cell profiling by single-cell multi-omics analyses. Finally, antigen-multimers accurately captured clinical anti-CD19 CAR T cells from patients' cellular infusion products, post-infusion peripheral blood, and tumor biopsies. Antigen-multimers can be readily extended to other CAR systems by switching its antigen ligand. As such, antigen-multimers have broad clinical and research applications.

4.
J Ethnopharmacol ; 247: 112232, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31606534

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: 2,3,5,4'-Tetrahydroxy-stilbene-2-O-ß-D-glucoside (TSG) is the main active component of Polygoni Multiflori Radix, a root of the homonymous plant widely used in traditional Chinese medicine. TSG has protective effects on the liver, reduces cholesterol and possesses anti-oxidant, anti-tumor, and anti-atherosclerotic properties. However, the pharmacological effects and mechanisms of action of Polygonum multiflorum on atherosclerosis (AS) have not been studied yet. PURPOSE: The aim of this research was to study the effects of Polygoni Multiflori Radix Praeparata (PMRP) and its major active chemical constituent TSG on AS in ApoE-deficient (ApoE-/-) mice fed with high fat diets to provide a scientific basis in the use of PMRP and TSG against cardiovascular diseases. METHODS: High fat diet induced AS in ApoE-/- mice were treated with PMRP, TSG (low and high doses), and simvastatin (SIM) for 8 weeks. At the end of the treatment, mouse serum lipid levels, triglycerides (TG), and total cholesterol (TC) were measured by an oxidase method (other indicators were determined by ELISA), while the content in oxidized low density lipoprotein (ox-LDL) and the expression of inflammatory factors such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), vascular cell adhesion molecule-1 (VCAM-1), and monocyte chemotactic protein-1 (MCP-1) in the serum and aortic samples were measured by ELISA. Atherosclerotic plaque morphology was evaluated by oil red O in thoracic aorta. In addition, 16S rDNA-V4 hypervariable region genome sequence of all microbes in the fecal sample from each group was analyzed to evaluate potential structure changes in the gut microbiota after treatment with PMRP and TSG. RESULTS: TSG markedly inhibited AS plaque formation in ApoE-/- mice. Furthermore, PMRP and TSG improved lipid accumulation by reducing TG and ox-LDL levels. TSG inhibited inflammation by the down-regulation of IL-6, TNF-α, VCAM-1 and MCP-1 expression in serum, and PMRP inhibited inflammation by reducing VCAM-1, ICAM-1 and CCRA expression in aortic tissue. In addition, TSG reduced or prevented AS by the regulation of the composition of the overall gut microbiota, such as Firmicutes, Bacteroidetes, Tenericutes, Proteobacteria phyla, Akkermensia genera and Helicobacter pylori. CONCLUSION: PMRP and TSG improved lipid accumulation and inflammation, and regulated the intestinal microbial imbalance in ApoE-/- mice. TSG exerted a preventive effect in the development and progression of AS.


Assuntos
Aterosclerose/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Glucosídeos/farmacologia , Inflamação/tratamento farmacológico , Polygonum/química , Estilbenos/farmacologia , Administração Oral , Animais , Aorta/patologia , Aterosclerose/sangue , Aterosclerose/etiologia , Aterosclerose/patologia , Quimiocina CCL2/imunologia , Quimiocina CCL2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Microbioma Gastrointestinal/imunologia , Glucosídeos/uso terapêutico , Humanos , Inflamação/sangue , Inflamação/etiologia , Molécula 1 de Adesão Intercelular/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Lipoproteínas LDL/sangue , Masculino , Camundongos , Camundongos Knockout para ApoE , Estilbenos/uso terapêutico , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/imunologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
5.
Cell Mol Immunol ; 17(3): 203-217, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31530899

RESUMO

A major unanswered question is how a TCR discriminates between foreign and self-peptides presented on the APC surface. Here, we used in situ fluorescence resonance energy transfer (FRET) to measure the distances of single TCR-pMHC bonds and the conformations of individual TCR-CD3ζ receptors at the membranes of live primary T cells. We found that a TCR discriminates between closely related peptides by forming single TCR-pMHC bonds with different conformations, and the most potent pMHC forms the shortest bond. The bond conformation is an intrinsic property that is independent of the binding affinity and kinetics, TCR microcluster formation, and CD4 binding. The bond conformation dictates the degree of CD3ζ dissociation from the inner leaflet of the plasma membrane via a positive calcium signaling feedback loop to precisely control the accessibility of CD3ζ ITAMs for phosphorylation. Our data revealed the mechanism by which a TCR deciphers the structural differences among peptides via the TCR-pMHC bond conformation.


Assuntos
Complexo CD3/química , Antígenos CD4/química , Membrana Celular/química , Antígenos de Histocompatibilidade/química , Receptores de Antígenos de Linfócitos T/química , Linfócitos T/química , Animais , Complexo CD3/genética , Complexo CD3/imunologia , Antígenos CD4/genética , Antígenos CD4/imunologia , Membrana Celular/genética , Membrana Celular/imunologia , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/imunologia , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia
6.
JCI Insight ; 4(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672936

RESUMO

Human cancer cells were eradicated by adoptive transfer of T cells transduced with a chimeric antigen receptor (CAR) made from an antibody (237Ab) that is highly specific for the murine Tn-glycosylated podoplanin (Tn-PDPN). The objectives were to determine the specificity of these CAR-transduced T (CART) cells and the mechanism for the absence of relapse. We show that although the 237Ab bound only to cell lines expressing murine Tn-PDPN, the 237Ab-derived 237CART cells lysed multiple different human and murine cancers not predicted by the 237Ab binding. Nevertheless, the 237CART cell reactivities remained cancer specific because all recognitions were dependent on the Tn glycosylation that resulted from COSMC mutations that were not present in normal tissues. While Tn was required for the recognition by 237CART, Tn alone was not sufficient for 237CART cell activation. Activation of 237CART cells required peptide backbone recognition but tolerated substitutions of up to 5 of the 7 amino acid residues in the motif recognized by 237Ab. Together, these findings demonstrate what we believe is a new principle whereby simultaneous recognition of multiple independent Tn-glycopeptide antigens on a cancer cell makes tumor escape due to antigen loss unlikely.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias/imunologia , Receptores de Antígenos Quiméricos/imunologia , Transferência Adotiva , Animais , Antígenos Glicosídicos Associados a Tumores/imunologia , Linhagem Celular , Glicosilação , Humanos , Glicoproteínas de Membrana/imunologia , Camundongos , Neoplasias/patologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-26294926

RESUMO

Polygonum multiflorum Radix (PMR) has long history in hair growth promotion and hair coloring in clinical applications. However, several crucial problems in its clinic usage and mechanisms are still unsolved or lack scientific evidences. In this research, C57BL/6J mice were used to investigate hair growth promotion activity and possible mechanism of PMR and Polygonum multiflorum Radix Preparata (PMRP). Hair growth promotion activities were investigated by hair length, hair covered skin ratio, the number of follicles, and hair color. Regulation effects of several cytokines involved in the hair growth procedure were tested, such as fibroblast growth factor (FGF-7), Sonic Hedgehog (SHH), ß-catenin, insulin-like growth factor-1 (IGF-1), and hepatocyte growth factor (HGF). Oral PMR groups had higher hair covered skin ratio (100 ± 0.00%) than oral PMRP groups (48%~88%). However, topical usage of PMRP had about 90% hair covered skin ratio. Both oral administration of PMR and topically given PMRP showed hair growth promotion activities. PMR was considered to be more suitable for oral administration, while PMRP showed greater effects in external use. The hair growth promotion effect of oral PMR was most probably mediated by the expression of FGF-7, while topical PMRP promoted hair growth by the stimulation of SHH expression.

8.
J Ethnopharmacol ; 153(3): 763-70, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24680992

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Raw and processed Polygoni Multiflori Radix (PMR and PMRP) are used in the prevention and treatment of non-alcoholic fatty liver disease (NAFLD), hyperlipidemia or related diseases. In our previous research, 2, 3, 5, 4'-tetrahydroxy-stilbene-2-O-ß-D-glucoside (TSG) displayed the most important role in the total cholesterol (TC) lowering effect among all the chemical constituents of Polygonum multiflorum. Emodin and physcion displayed more favorable triglyceride (TG) reducing effects than TSG. However, there are few researches focus on the approach and mechanism of how do Polygonum multiflorum exhibit good lipid regulation activity. The targeted sites of active substances of Polygonum multiflorum are still not clearly elucidated. This research pays close attention to how major chemical components of Polygonum multiflorum affect the TC and TG contents in liver cells. MATERIALS AND METHODS: In this research, a sensitive, accurate and rapid in vitro model, steatosis hepatic L02 cell, was used to explore target sites of active chemical substances of Polygonum multiflorum for 48h. Steatosis hepatic L02 cell was exposed to emodin, physcion and TSG, respectively. The contents of four key enzymes in the pathway of synthesis and decomposition of TC and TG were investigated after exposure. Meanwhile, the contents of lipid transfer protein were also tested. The diacylgycerol acyltransferase 1 (DGAT1) controlled the biosynthesis of TG from free fatty acids while 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase) limited the biosynthesis of TC. Hepatic triglyceride lipase (HTGL) and cholesterol 7α-hydroxylase (CYP7A) played the key role in the lipolysis procedure of TG and TC. RESULTS: The synthesis of TC and TG in steatosis L02 cells were apparently increased in the model group compared to the control group. Intracellular contents of HMG-CoA reductase and DGAT1 increased 32.33% and 56.52%, while contents of CYP7A and HTGL decreased 21.61% and 47.37%. Emodin, physcion and TSG all showed down-regulation effects on HMG-CoA reductase, while up-regulation effects on CYP7A. The most remarkable effect on HMG-CoA reductase was found on emodin. Emodin could reduce the DGAT1 content from 438.44 ± 4.51 pg/mL in model group to 192.55 ± 9.85 pg/mL (100 µm). The content of HTGL in 300 µm physcion group was 3.15 ± 0.15 U/mL, which was more significantly effective than the control, lovastatin and fenofibrate group. CONCLUSIONS: TSG could raise the content of CYP7A and then promote the lipolysis of cholesterol. Moreover, TSG also showed the best LDL-reducing effect. Emodin could inhibit HMG-CoA reductase and DGAT1, which were key enzymes in the synthesis of TC and TG. Physcion increased the content of HTGL, and then could boost the lipolysis of triglyceride. At the same time, physcion showed the best VLDL-reducing effect. In view of the above conclusions, we contributed the lipid regulation activity to an overall synergy of TSG, emodin and physcion.


Assuntos
Colesterol/metabolismo , Emodina/análogos & derivados , Emodina/farmacologia , Glucosídeos/farmacologia , Polygonum , Estilbenos/farmacologia , Triglicerídeos/metabolismo , Linhagem Celular , Colesterol 7-alfa-Hidroxilase/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Fígado Gorduroso/metabolismo , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Raízes de Plantas
10.
PLoS One ; 8(9): e75589, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086580

RESUMO

To exploit the biological and pharmacological properties of immunoglobulin constant domain Fc fragment and increase the killing efficacy of T cells, a single chain variable fragment specific to CD3 was fused with Fcab (Fc antigen binding), a mutant Fc fragment with specificity against Human epidermal growth factor receptor 2 (HER2) developed by F-star. The bispecific fusion named as FcabCD3 was expressed by transient transfection in HEK-293T cells and purified by affinity chromatography. Specific cytolytic activity of retargeted T cells to kill HER2 positive SKBR3 cell line was evaluated in vitro. FcabCD3 was able to retarget T cells to kill both Herceptin insensitive Colo205-luc cell line and HER2 low expression MDA-MB-231-luc cell line. Furthermore, FcabCD3 was effective in eliminating the Colo205 tumor established on BALB/c nu/nu mice.


Assuntos
Anticorpos Biespecíficos/imunologia , Complexo CD3/genética , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Receptor ErbB-2/genética , Proteínas Recombinantes de Fusão/genética , Linfócitos T/imunologia , Animais , Complexo CD3/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Células K562 , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Receptor ErbB-2/imunologia , Proteínas Recombinantes de Fusão/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa