Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(10): 1228, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37725196

RESUMO

Surface oil sands mining and extraction in northern Alberta's Athabasca oil sands region produce large volumes of oil sands process-affected water (OSPW). OSPW is a complex mixture containing major contaminant classes including trace metals, polycyclic aromatic hydrocarbons, and naphthenic acid fraction compounds (NAFCs). Naphthenic acids (NAs) are the primary organic toxicants in OSPW, and reducing their concentrations is a priority for oil sands companies. Previous evidence has shown that constructed wetland treatment systems (CWTSs) are capable of reducing the concentration of NAs and the toxicity of OSPW through bioremediation. In this study, we constructed greenhouse mesocosms with OSPW or lab process water (LPW) (i.e., water designed to mimic OSPW minus the NAFC content) with three treatments: (1) OSPW planted with Carex aquatilis; (2) OSPW, no plants; and (3) LPW, no plants. The OSPW-C. aquatilis treatment saw a significant reduction in NAFC concentrations in comparison to OSPW, no plant treatments, but both changed the distribution of the NAFCs in similar ways. Upon completion of the study, treatments with OSPW saw fewer high-molecular-weight NAs and an increase in the abundance of O3- and O4-containing formulae. Results from this study provide invaluable information on how constructed wetlands can be used in future remediation of OSPW in a way that previous studies were unable to achieve due to uncontrollable environmental factors in field experiments and the active, high-energy processes used in CWTSs pilot studies.


Assuntos
Carex (Planta) , Oligoelementos , Áreas Alagadas , Campos de Petróleo e Gás , Monitoramento Ambiental , Água
2.
Environ Sci Technol ; 54(5): 2790-2799, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31995355

RESUMO

Distinguishing between naphthenic acids (NAs) associated with oil sands process-affected water (OSPW) and those found naturally in groundwaters in contact with the bituminous McMurray Formation poses a considerable analytical challenge to environmental research in Canada's oil sands region. Previous work addressing this problem combined high-resolution Orbitrap mass spectrometry with carbon isotope values generated by online pyrolysis (δ13Cpyr) to characterize and quantify the acid extractable organics (AEOs) fraction containing NAs in the subsurface near an oil sands tailings pond. Here, we build upon this work through further development and application of these techniques at two different study sites near two different tailings ponds, in conjunction with the use of an additional isotopic tool-sulfur isotope analysis (δ34S) of AEOs. The combined use of both δ13Cpyr and δ34S allowed for discrimination of AEOs into the three end-members relevant to ascertaining the NA environmental footprint within the region: (1) OSPW; (2) McMurray Formation groundwater (i.e., naturally occurring bitumen), and; (3) naturally occurring non-bitumen. A Bayesian isotopic mixing model was used to determine the relative proportions of these three sources in groundwater at both study sites. Although background levels of OSPW-derived AEOs were generally low, one sample containing 49-99% (95% credibility interval) OSPW-derived AEOs was detected within an inferred preferential flow-path, highlighting the potential for this technique to track tailings pond seepage.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Teorema de Bayes , Ácidos Carboxílicos , Campos de Petróleo e Gás , Lagoas , Areia
3.
Environ Sci Technol ; 54(3): 1522-1532, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31906621

RESUMO

The objective of this study was to advance analytical methods for detecting oil sands process-affected water (OSPW) seepage from mining containments and discriminating any such seepage from the natural bitumen background in groundwaters influenced by the Alberta McMurray formation. Improved sampling methods and quantitative analyses of two groups of monoaromatic acids were employed to analyze OSPW and bitumen-affected natural background groundwaters for source discrimination. Both groups of monoaromatic acids showed significant enrichment in OSPW, while ratios of O2/O4 containing heteroatomic ion classes of acid extractable organics (AEOs) did not exhibit diagnostic differences. Evaluating the monoaromatic acids to track a known plume of OSPW-affected groundwater confirmed their diagnostic abilities. A secondary objective was to assess anthropogenically derived artificial sweeteners and per- and polyfluoroalkyl substances (PFAS) as potential tracers for OSPW. Despite the discovery of acesulfame and PFAS in most OSPW samples, trace levels in groundwaters influenced by general anthropogenic activities preclude them as individual robust tracers. However, their inclusion with the other metrics employed in this study served to augment the tiered, weight of evidence methodology developed. This methodology was then used to confirm earlier findings of OSPW migrations into groundwater reaching the Athabasca River system adjacent to the reclaimed pond at Tar Island Dyke.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Alberta , Ácidos Carboxílicos , Hidrocarbonetos , Campos de Petróleo e Gás , Areia
4.
Environ Sci Technol ; 53(4): 2095-2104, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30648867

RESUMO

Naphthenic acids (NAs) are carboxylic acids naturally occurring in crude oils and bitumen and are suspected to be the primary toxic substances in wastewaters associated with oil refineries and mining of oil sands. Oil sands process-affected water (OSPW) generated by the extraction of bitumen from oil sands are a major source of NAs and are currently stored in tailings ponds. We report on the acute lethality and teratogenic effects of aquatic exposure of Silurana (Xenopus) tropicalis embryos to commercial NA extracts and from the acid extractable organics (AEOs) fraction of a Canadian OSPW. Using electrospray ionization-high resolution mass spectrometry, we determined that the O2 species proportion were 98.8, 98.9 and 58.6% for commercial mixtures Sigma 1 (S1M) and Sigma 2 (S2M), and AEOs, respectively. The 96h LC50 estimates were 10.4, 11.7, and 52.3 mg/L for S1M, S2M, and the AEOs, respectively. The 96h EC50 estimates based on frequencies of developmental abnormalities were 2.1, 2.6, and 14.2 mg/L for S1M, S2M, and the AEOs, respectively. The main effects observed were reduced body size, edema, and cranial, heart, gut and ocular abnormalities. Increasing concentrations of the mixtures resulted in increased severity and frequency of abnormalities ( p < 0.05). The rank-order potency was S1M > S2M > AEO based on LC50 and EC50 estimates. These data provide insight into the effects NAs in amphibian embryos and can contribute to the development of environmental guidelines for the management of OSPW.


Assuntos
Campos de Petróleo e Gás , Poluentes Químicos da Água , Animais , Canadá , Ácidos Carboxílicos , Água , Xenopus , Xenopus laevis
5.
Rapid Commun Mass Spectrom ; 32(9): 695-702, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29486520

RESUMO

RATIONALE: Oil sands mining in Alberta, Canada, requires removal and stockpiling of considerable volumes of near-surface overburden material. This overburden includes lean oil sands (LOS) which cannot be processed economically but contain sparingly soluble petroleum hydrocarbons and naphthenic acids, which can leach into environmental waters. In order to measure and track the leaching of dissolved constituents and distinguish industrially derived organics from naturally occurring organics in local waters, practical methods were developed for characterizing multiple sources of contaminated water leakage. METHODS: Capillary electrophoresis/positive-ion electrospray ionization low-resolution time-of-flight mass spectrometry (CE/LRMS), high-resolution negative-ion electrospray ionization Orbitrap mass spectrometry (HRMS) and conventional gas chromatography/flame ionization detection (GC/FID) were used to characterize porewater samples collected from within Athabasca LOS and mixed surficial materials. GC/FID was used to measure total petroleum hydrocarbon and HRMS was used to measure total naphthenic acid fraction components (NAFCs). HRMS and CE/LRMS were used to characterize samples according to source. RESULTS: The amounts of total petroleum hydrocarbon in each sample as measured by GC/FID ranged from 0.1 to 15.1 mg/L while the amounts of NAFCs as measured by HRMS ranged from 5.3 to 82.3 mg/L. Factors analysis (FA) on HRMS data visually demonstrated clustering according to sample source and was correlated to molecular formula. LRMS coupled to capillary electrophoresis separation (CE/LRMS) provides important information on NAFC isomers by adding analyte migration time data to m/z and peak intensity. CONCLUSIONS: Differences in measured amounts of total petroleum hydrocarbons by GC/FID and NAFCs by HRMS indicate that the two methods provide complementary information about the nature of dissolved organic species in a soil or water leachate samples. NAFC molecule class Ox Sy is a possible tracer for LOS seepage. CE/LRMS provides complementary information and is a feasible and practical option for source evaluation of NAFCs in water.

6.
Mass Spectrom Rev ; 35(2): 311-28, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25970647

RESUMO

There has been a recent surge in the development of mass spectrometric methods for detailed characterization of naphthenic acid fraction compounds (all C(c)H(h)N(n)O(o)S(s), species, including heteroatomic and aromatic components in the acid-extractable fraction) in environmental samples. This surge is driven by the increased activity in oil sands environmental monitoring programs in Canada, the exponential increase in research studies on the isolation and toxicity identification of components in oil sands process water (OSPW), and the analytical requirements for development of technologies for treatment of OSPW. There has been additional impetus due to the parallel studies to control corrosion from naphthenic acids during the mining and refining of heavy bitumen and crude oils. As a result, a range of new mass spectrometry tools have been introduced since our last major review of this topic in 2009. Of particular significance are the developments of combined mass spectrometric methods that incorporate technologies such as gas chromatography, liquid chromatography, and ion mobility. There has been additional progress with respect to improved visualization methods for petroleomics and oil sands environmental forensics. For comprehensive coverage and more reliable characterization of samples, an approach based on multiple-methods that employ two or more ionization modes is recommended. On-line or off-line fractionation of isolated extracts, with or without derivatization, might also be used prior to mass spectrometric analyses. Individual ionization methods have their associated strengths and weaknesses, including biases, and thus dependence upon a single ionization method is potentially misleading. There is also a growing trend to not rely solely on low-resolution mass spectrometric methods (<20,000 resolving power at m/z 200) for characterization of complex samples. Future research is anticipated to focus upon (i) structural elucidation of components to determine the correlation with toxicity or corrosion, (ii) verification of characterization studies based on authentic reference standards and reference materials, and (iii) integrated approaches based on multiple-methods and ionization methods for more-reliable oil sands environmental forensics.

7.
Mol Pharm ; 14(8): 2616-2623, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28294623

RESUMO

Herein, we report on the systematic design and characterization of cross-linked polymer carriers containing ß-cyclodextrin (ß-CD) and divinyl sulfone (DVS). The polymer carriers were prepared at variable feed ratios (ß-CD-DVS; 1:1, 1:2, 1:3, and 1:6) and characterized using spectroscopy (IR, 1H solution NMR, and 13C CP-MAS solids NMR spectroscopy), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and a dye decolorization method using phenolphthalein. Uptake studies were carried out at pH 9.00 for the polymer carriers using single component bile acids (cholic acid, deoxycholic acid, glycodeoxycholic acid, and taurodeoxycholic acid). Equilibrium uptake results were evaluated by the Langmuir isotherm model where variable equilibrium parameters were related to the relative apolar character of the bile acid. The Langmuir model yields a carrier/bile acid binding affinity of ∼103 M-1 where the lipophilic inclusion sites of the polymer play a prominent role, while the DVS linker framework sites have a lower adsorption affinity, in accordance with the greater hydrophilic character of such sites.


Assuntos
Polímeros/química , beta-Ciclodextrinas/química , Acetazolamida/química , Acetazolamida/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dacarbazina/análogos & derivados , Dacarbazina/química , Dacarbazina/farmacologia , Dendrímeros/química , Glioblastoma/metabolismo , Humanos , Micelas , Quercetina/química , Quercetina/farmacologia , Esferoides Celulares/efeitos dos fármacos , Temozolomida
8.
Rapid Commun Mass Spectrom ; 31(24): 2057-2065, 2017 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-28944977

RESUMO

RATIONALE: The characterization of naphthenic acid fraction compounds (NAFCs) in oil sands process affected water (OSPW) is of interest for both toxicology studies and regulatory reasons. Previous studies utilizing authentic standards have identified dicarboxylic naphthenic acids using two-dimensional gas chromatography hyphenated to time-of-flight mass spectrometry (GC × GC/TOFMS). The selective derivatization of hydroxyl groups has also recently aided in the characterization of oxy-NAFCs, and indirectly the characterization of dicarboxylic NAFCs. However, there has been no previous report of derivatization being used to directly aid in the standard-free characterization of NAFCs with multiple carboxylic acid functional groups. Herein we present proof-of-concept for the characterization of dicarboxylic NAFCs utilizing amide derivatization. METHODS: Carboxylic acid groups in OSPW extract and in a dicarboxylic acidstandard were derivatized to amides using a previously described method. The derivatized extract and derivatized standard were analyzed by direct-injection positive-mode electrospray ionization ((+)ESI) high-resolution mass spectrometry (HRMS), and the underivatized extract was analyzed by (-)ESI MS. Tandem mass spectrometry (MS/MS) was carried out on selected ions of the derivatized standard and derivatized OSPW. Data analysis was carried out using the Python programming language. RESULTS: The distribution of monocarboxylic NAFCs observed in the amide-derivatized OSPW sample by (+)ESI-MS was generally similar to that seen in underivatized OSPW by (-)ESI-MS. The dicarboxylic acid standard shows evidence of being doubly derivatized, although the second derivatization appears to be inefficient. Furthermore, a spectrum of potential diacid NAFCs is presented, identified by both charge state and derivatization mass. Interference due to the presence of multiple derivatization products is noted, but can be eliminated using on-line separation or an isotopically labelled derivatization reagent. CONCLUSIONS: Proof of concept for the characterization of dicarboxylic NAFCs utilizing amide derivatization is demonstrated. Furthermore, (+)ESI-HRMS of the derivatized monocarboxylic NAFCS yields similar information to (-)ESI-MS analysis of underivatized NAFCs, with the benefit of added selectivity for carboxylic acid species and the characterization of diacids.

9.
J Environ Sci (China) ; 49: 203-212, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28007176

RESUMO

Capillary electrophoresis coupled to mass spectrometry (CE-MS) was used for the analysis of naphthenic acid fraction compounds (NAFCs) of oil sands process-affected water (OSPW). A standard mixture of amine-derivatized naphthenic acids is injected directly onto the CE column and analyzed by CE-MS in less than 15min. Time of flight MS analysis (TOFMS), optimized for high molecular weight ions, showed NAFCs between 250 and 800m/z. With a quadrupole mass analyzer, only low-molecular weight NAFCs (between 100 and 450m/z) are visible under our experimental conditions. Derivatization of NAFCs consisted of two-step amidation reactions mediated by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), or mediated by a mixture of EDC and N-hydroxysuccinimide, in dimethyl sulfoxide, dichloromethane or ethyl acetate. The optimum background electrolyte composition was determined to be 30% (V/V) methanol in water and 2% (V/V) formic acid. NAFCs extracted from OSPW in the Athabasca oil sands region were used to demonstrate the feasibility of CE-MS for the analysis of NAFCs in environmental samples, showing that the labeled naphthenic acids are in the mass range of 350 to 1500m/z.


Assuntos
Ácidos Carboxílicos/análise , Eletroforese Capilar , Monitoramento Ambiental/métodos , Campos de Petróleo e Gás , Poluentes Químicos da Água/análise , Ácidos Carboxílicos/química , Poluentes Químicos da Água/química
10.
Environ Sci Technol ; 49(14): 8367-76, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26098364

RESUMO

Neonicotinoids are commonly used seed treatments on Canada's major prairie crops. Transported via surface and subsurface runoff into wetlands, their ultimate aquatic fate remains largely unknown. Biotic and abiotic wetland characteristics likely affect neonicotinoid presence and environmental persistence, but concentrations vary widely between wetlands that appear ecologically (e.g., plant composition) and physically (e.g., depth) similar for reasons that remain unclear. We conducted intensive surveys of 238 wetlands, and documented 59 wetland (e.g., dominant plant species) and landscape (e.g., surrounding crop) characteristics as part of a novel rapid wetland assessment system. We used boosted regression tree (BRT) analysis to predict both probability of neonicotinoid analytical detection and concentration. BRT models effectively predicted the deviance in neonicotinoid detection (62.4%) and concentration (74.7%) from 21 and 23 variables, respectively. Detection was best explained by shallow marsh plant species identity (34.8%) and surrounding crop (13.9%). Neonicotinoid concentration was best explained by shallow marsh plant species identity (14.9%) and wetland depth (14.2%). Our research revealed that plant composition is a key indicator and/or driver of neonicotinoid presence and concentration in Prairie wetlands. We recommend wetland buffers consisting of diverse native vegetation be retained or restored to minimize neonicotinoid transport and retention in wetlands, thereby limiting their potential effects on wetland-dependent organisms.


Assuntos
Pradaria , Inseticidas/análise , Modelos Teóricos , Poluentes Químicos da Água/análise , Áreas Alagadas , Anabasina/análise , Produtos Agrícolas , Ecossistema , Plantas , Análise de Regressão , Saskatchewan
11.
J Environ Sci Health B ; 50(11): 819-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26357892

RESUMO

As part of an exchange technology program between the government of Barbados and Environment Canada, methanolic and aqueous extracts from the flavonoid-rich Lamiaceae family were characterized using negative-ion electrospray mass spectrometry. The species investigated is part of the Caribbean Pharmacopoeia, and is used for a variety of health issues, including colds, flu, diabetes, and hypertension. The extracts were investigated for structural elucidation of phenolics, identification of chemical taxonomic profile, and evidence of bio-accumulator potential. The methanolic and aqueous leaf extracts of Plectranthus amboinicus yielded rosmarinic acid, ladanein, cirsimaritin, and other methoxylated flavonoids. This genus also shows a tendency to form conjugates with monosaccharides, including glucose, galactose, and rhamnose. The aqueous extract yielded four isomeric rhamnosides. The formation of conjugates by Plectranthus amboinicus is thus evidence of high bioaccumulator significance.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/análise , Lamiaceae/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Barbados , Flavonoides/química , Flavonoides/farmacocinética , Glicosídeos/análise , Glicosídeos/química , Isomerismo , Fenóis/análise , Extratos Vegetais/análise , Extratos Vegetais/química , Folhas de Planta/química , Ramnose/química
12.
Anal Chem ; 86(16): 8281-8, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25036898

RESUMO

The Athabasca oil sands industry, an alternative source of petroleum, uses large quantities of water during processing of the oil sands. In keeping with Canadian environmental policy, the processed water cannot be released to natural waters and is thus retained on-site in large tailings ponds. There is an increasing need for further development of analytical methods for environmental monitoring. The following details the first example of the application of gas chromatography atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FTICR MS) for the study of environmental samples from the Athabasca region of Canada. APCI offers the advantages of reduced fragmentation compared to other ionization methods and is also more amenable to compounds that are inaccessible by electrospray ionization. The combination of GC with ultrahigh resolution mass spectrometry can improve the characterization of complex mixtures where components cannot be resolved by GC alone. This, in turn, affords the ability to monitor extracted ion chromatograms for components of the same nominal mass and isomers in the complex mixtures. The proof of concept work described here is based upon the characterization of one oil sands process water sample and two groundwater samples in the area of oil sands activity. Using the new method, the Ox and OxS compound classes predominated, with OxS classes being particularly relevant to the oil sands industry. The potential to resolve retention times for individual components within the complex mixture, highlighting contributions from isomers, and to characterize retention time profiles for homologous series is shown, in addition to the ability to follow profiles of double bond equivalents and carbon number for a compound class as a function of retention time. The method is shown to be well-suited for environmental forensics.

13.
Anal Chem ; 86(15): 7666-73, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25001115

RESUMO

During the bitumen extraction from the oil sands of Alberta, large volumes of process water containing naphthenic acids are stored in tailing ponds. The naphthenic acids along with other components in the processed waters are known to be toxic in aquatic environments. In view of the complex matrix and the toxicity of the processed waters, there is a need for complementary analytical techniques for comprehensive characterization of the naphthenic acid mixtures. This study reports the online gas chromatographic separation of naphthenic acid mixtures prior to ultrahigh resolution mass spectrometry detection, using electron and chemical ionization. Two oil sands processed water samples and two groundwater samples were characterized to evaluate the performance of the instrumental technique. The high mass resolution of the system enabled visualization of the data using Kendrick mass defect plots. The addition of gas chromatographic separations enabled visualization of the data as unique compound class elution fingerprints. The technique is demonstrated to be a valuable tool for chemical fingerprinting of naphthenic acids.

14.
Environ Sci Technol ; 48(17): 10264-72, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25032949

RESUMO

To analyze the naphthenic acid content of environmental waters quickly and efficiently, we have developed a method that employs differential mobility spectrometry (DMS) coupled to mass spectrometry (MS). This technique combines the benefits of infusion-based MS experiments (parallel, on-demand access to individual components) with DMS's ability to provide liquid chromatography-like separations of isobaric and isomeric compounds in a fraction of the time. In this study, we have applied a DMS-MS workflow to the rapid gas-phase separation of naphthenic acids (NAs) within a technical standard and a real-world oil sands process-affected water (OSPW) extract. Among the findings provided by this workflow are the rapid characterization of isomeric NAs (i.e., same molecular formulas) in a complex OSPW sample, the ability to use DMS to isolate individual NA components (including isomeric NAs) for in-depth structural analyses, and a method by which NA analytes, background ions, and dimer species can be characterized by their distinct behaviors in DMS. Overall, the profiles of the NA content of the technical and OSPW samples were consistent with published values for similar samples, such that the benefits of DMS technology do not detract from the workflow's accuracy or quality.


Assuntos
Ácidos Carboxílicos/química , Espectrometria de Massas/métodos , Análise Espectral/métodos , Misturas Complexas/química , Dimerização , Íons , Isomerismo , Óleos/química , Padrões de Referência , Dióxido de Silício , Águas Residuárias/química , Poluentes Químicos da Água/análise
15.
Environ Sci Technol ; 48(5): 2660-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24446583

RESUMO

The objective of this study was to identify chemical components that could distinguish chemical mixtures in oil sands process-affected water (OSPW) that had potentially migrated to groundwater in the oil sands development area of northern Alberta, Canada. In the first part of the study, OSPW samples from two different tailings ponds and a broad range of natural groundwater samples were assessed with historically employed techniques as Level-1 analyses, including geochemistry, total concentrations of naphthenic acids (NAs) and synchronous fluorescence spectroscopy (SFS). While these analyses did not allow for reliable source differentiation, they did identify samples containing significant concentrations of oil sands acid-extractable organics (AEOs). In applying Level-2 profiling analyses using electrospray ionization high resolution mass spectrometry (ESI-HRMS) and comprehensive multidimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF/MS) to samples containing appreciable AEO concentrations, differentiation of natural from OSPW sources was apparent through measurements of O2:O4 ion class ratios (ESI-HRMS) and diagnostic ions for two families of suspected monoaromatic acids (GC × GC-TOF/MS). The resemblance between the AEO profiles from OSPW and from 6 groundwater samples adjacent to two tailings ponds implies a common source, supporting the use of these complimentary analyses for source identification. These samples included two of upward flowing groundwater collected <1 m beneath the Athabasca River, suggesting OSPW-affected groundwater is reaching the river system.


Assuntos
Monitoramento Ambiental , Água Subterrânea/análise , Resíduos Industriais/análise , Campos de Petróleo e Gás/química , Poluição por Petróleo/análise , Poluentes Químicos da Água/análise , Alberta , Cromatografia Gasosa-Espectrometria de Massas , Dióxido de Silício/análise , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray
16.
J Phycol ; 50(4): 727-35, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26988456

RESUMO

Industrial activity associated with oil-sands extraction in Canada's Athabasca region produces a variety of contaminants of concern, including naphthenic acid fraction components (NAFCs). NAFCs are a complex mixture of organic compounds that are poorly understood both in terms of their chemical composition and effects on the environment. NAFC toxicity in the unicellular green algae Chlamydomonas reinhardtii P.A.Dangeard was correlated with the presence of the algal cell wall. It was suggested that the toxicity of NAFCs in C. reinhardtii was due to surfactant effects. Surfactant-cell wall interactions are specific and governed by the compound class and structure, and by the nature of the biological material. Here, we investigate the effects of wildtype (WT) C. reinhardtii and two cell-wall mutants on specific classes of NAFCs when growing cultures were treated with a 100 mg · L(-1) solution of NAFCs. Changes in the NAFC composition in the media were examined using high resolution mass spectrometry over a period of 4 d. Algal mediated changes in the NAFCs were limited to specific classes of NAFCs. In particular, the removal of large, classical naphthenic acids, with a double bond equivalent of 8, was observed in WT C. reinhardtii cultures. The observed algal mediated changes in NAFC composition would have been masked by low resolution mass spectrometry and highlight the importance of this tool in examining bioremediation of complex mixtures of NAFCs.

17.
Rev Environ Health ; 29(1-2): 5-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24552956

RESUMO

The incorporation of ß-cyclodextrin (ß-CD) within the framework structure of copolymer sorbent materials, represents a novel modular design approach with significant potential for controlled tuning of the textural mesoporosity of such sorbent frameworks. ß-CD copolymers represent an innovative design strategy for the development of "smart" or "functional" porous materials with improved solid phase extraction (SPE) and molecular recognition properties because of the porogen characteristics and their unique host-guest properties. Carbohydrate-based copolymers containing cyclodextrins (CDs) are of interest, in part, because of their ability to form stable inclusion complexes in aqueous solution. The inclusion properties of ß-CD copolymers are determined by the surface area, pore structure, and site accessibility of inclusion sites within the copolymer framework. A mini-review of recent research in our group concerning the use of copolymers containing ß-CD as sorbent materials for naphthenic acids is presented herein.


Assuntos
Recuperação e Remediação Ambiental/métodos , Campos de Petróleo e Gás , Polímeros/química , Extração em Fase Sólida/métodos , beta-Ciclodextrinas/química , Nanopartículas , Porosidade
18.
Sci Total Environ ; 913: 169636, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38157903

RESUMO

Industrial extraction of unconventional petroleum results in notable volumes of oil sands process water (OSPW), containing elevated concentrations of naphthenic acids (NAs). The presence of NAs represents an intricate amalgamation of dissolved organic constituents, thereby presenting a notable hurdle for the domain of environmental analytical chemistry. There is growing concern about monitoring the potential seepage of OSPW NAs into nearby groundwater and river water. This review summarizes recent studies on sample preparation, characterization, monitoring, risk assessment, and treatment of NAs in industrial wastewater and surrounding water. Sample preparation approaches, such as liquid-liquid extraction, solid phase microextraction, and solid phase extraction, are crucial in isolating chemical standards, performing molecular level analysis, assessing aquatic toxicity, monitoring, and treating OSPW. Instrument techniques for NAs analysis were reviewed to cover different injection modes, ionization sources, and mass analyzers. Recent studies of transfer and transformation of NAs provide insights to differentiate between anthropogenic and natural bitumen-derived sources of NAs. In addition, related risk assessment and treatment studies were also present for elucidation of environmental implication and reclamation strategies. The synthesis of the current state of scientific knowledge presented in this review targets government regulators, academic researchers, and industrial scientists with interests spanning analytical chemistry, toxicology, and wastewater management.

19.
Chemosphere ; 358: 142076, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670506

RESUMO

Much of the toxicity in oil sands process-affected water in Athabasca oil sands tailings has been attributed to naphthenic acids (NAs) and associated naphthenic acid fraction compounds (NAFCs). Previous work has characterized the environmental behaviour and fate of these compounds, particularly in the context of constructed treatment wetlands. There is evidence that wetlands can attenuate NAFCs in natural and engineered contexts, but relative contributions of chemical, biotic, and physical adsorption with sequestration require deconvolution. In this work, the objective was to evaluate the extent to which prospective wetland substrate material may adsorb NAFCs using a peat-mineral mix (PMM) sourced from the Athabasca Oil Sands Region (AOSR). The PMM and NAFCs were first mixed and then equilibrated across a range of NAFC concentrations (5-500 mg/L) with moderate ionic strength and hardness (∼200 ppm combined Ca2+ and Mg2+) that approximate wetland water chemistry. Under these experimental conditions, low sorption of NAFCs to PMM was observed, where sorbed concentrations of NAFCs were approximately zero mg/kg at equilibrium. When NAFCs and PMM were mixed and equilibrated together at environmentally relevant concentrations, formula diversity increased more than could be explained by combining constituent spectra. The TOC present in this PMM was largely cellulose-derived, with low levels of thermally recalcitrant carbon (e.g., lignin, black carbon). The apparent enhancement of the concentration and diversity of components in PMM/NAFCs mixtures are likely related to aqueous solubility of some PMM-derived organic materials, as post-hoc combination of dissolved components from PMM and NAFCs cannot replicate enhanced complexity observed when the two components are agitated and equilibrated together.


Assuntos
Ácidos Carboxílicos , Campos de Petróleo e Gás , Solo , Áreas Alagadas , Adsorção , Ácidos Carboxílicos/química , Solo/química , Minerais/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Areia/química
20.
Energy Fuels ; 38(8): 6753-6763, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38654763

RESUMO

The comprehensive chemical characterization of crude oil is important for the evaluation of the transformation and fate of components in the environment. Molecular-level speciation of naphthenic acid fraction compounds (NAFCs) was investigated in a mesoscale spill tank using both negative-ion electrospray ionization (ESI) Orbitrap mass spectrometry (MS) and positive-ion atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (APPI-FT-ICR-MS). Both ionization techniques are coupled to high-resolution mass spectrometric detectors (ESI: Orbitrap MS; APPI: FT-ICR-MS at 9.4 T), enabling insight into the behavior and fate of petrogenic compounds during a simulated freshwater crude oil spill. Negative-ion ESI Orbitrap-MS reveals that oxygen-containing (Ox) classes are detected early in the spill, whereby species with more oxygen per molecule evolve later in the simulated spill. The O2-containing species gradually decreased in relative abundance, while O3 and O4 species increased in relative abundance throughout the simulated spill, which could correspond to a relative degree of oxygen incorporation. Nonpolar speciation by positive-ion APPI 9.4 T FT-ICR-MS allowed for the identification of water-soluble nonpolar and less polar acidic species. Molecular-level graphical representation of elemental compositions derived from simulated spill water-soluble and oil-soluble species suggest that biological activity is the primary degradation mechanism and that biodegradation was the dominant mechanism based on the negative-ion ESI Orbitrap-MS results.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa