Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
2.
Nature ; 534(7605): 119-23, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251288

RESUMO

Myocardial infarction results in compromised myocardial function and heart failure owing to insufficient cardiomyocyte self-renewal. Unlike many vertebrates, mammalian hearts have only a transient neonatal renewal capacity. Reactivating primitive reparative ability in the mature mammalian heart requires knowledge of the mechanisms that promote early heart repair. By testing an established Hippo-deficient heart regeneration mouse model for factors that promote renewal, here we show that the expression of Pitx2 is induced in injured, Hippo-deficient ventricles. Pitx2-deficient neonatal mouse hearts failed to repair after apex resection, whereas adult mouse cardiomyocytes with Pitx2 gain-of-function efficiently regenerated after myocardial infarction. Genomic analyses indicated that Pitx2 activated genes encoding electron transport chain components and reactive oxygen species scavengers. A subset of Pitx2 target genes was cooperatively regulated with the Hippo pathway effector Yap. Furthermore, Nrf2, a regulator of the antioxidant response, directly regulated the expression and subcellular localization of Pitx2. Pitx2 mutant myocardium had increased levels of reactive oxygen species, while antioxidant supplementation suppressed the Pitx2 loss-of-function phenotype. These findings reveal a genetic pathway activated by tissue damage that is essential for cardiac repair.


Assuntos
Antioxidantes/metabolismo , Traumatismos Cardíacos/metabolismo , Proteínas de Homeodomínio/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Regeneração/fisiologia , Fatores de Transcrição/metabolismo , Cicatrização/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Recém-Nascidos , Antioxidantes/farmacologia , Proteínas de Ciclo Celular , Modelos Animais de Doenças , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/genética , Feminino , Sequestradores de Radicais Livres/metabolismo , Traumatismos Cardíacos/genética , Traumatismos Cardíacos/patologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Via de Sinalização Hippo , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Espécies Reativas de Oxigênio/metabolismo , Regeneração/efeitos dos fármacos , Regeneração/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Cicatrização/efeitos dos fármacos , Cicatrização/genética , Proteínas de Sinalização YAP , Proteína Homeobox PITX2
3.
Circ Res ; 124(11): 1647-1657, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31120819

RESUMO

After myocardial injury, cardiomyocyte loss cannot be corrected by using currently available clinical treatments. In recent years, considerable effort has been made to develop cell-based cardiac repair therapies aimed at correcting for this loss. An exciting crop of recent studies reveals that inducing endogenous repair and proliferation of cardiomyocytes may be a viable option for regenerating injured myocardium. Here, we review current heart failure treatments, the state of cardiomyocyte renewal in mammals, and the molecular signals that stimulate cardiomyocyte proliferation. These signals include growth factors, intrinsic signaling pathways, microRNAs, and cell cycle regulators. Animal model cardiac regeneration studies reveal that modulation of exogenous and cell-intrinsic signaling pathways can induce reentry of adult cardiomyocytes into the cell cycle. Using direct myocardial injection, epicardial patch delivery, or systemic administration of growth molecules, these studies show that inducing endogenous cardiomyocytes to self-renew is an exciting and promising therapeutic strategy to treat cardiac injury in humans.


Assuntos
Fármacos Cardiovasculares/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Insuficiência Cardíaca/terapia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/transplante , Regeneração/efeitos dos fármacos , Transplante de Células-Tronco , Animais , Fármacos Cardiovasculares/efeitos adversos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Recuperação de Função Fisiológica , Transdução de Sinais , Transplante de Células-Tronco/efeitos adversos , Resultado do Tratamento
4.
Sci Transl Med ; 13(600)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193613

RESUMO

Human heart failure, a leading cause of death worldwide, is a prominent example of a chronic disease that may result from poor cell renewal. The Hippo signaling pathway is an inhibitory kinase cascade that represses adult heart muscle cell (cardiomyocyte) proliferation and renewal after myocardial infarction in genetically modified mice. Here, we investigated an adeno-associated virus 9 (AAV9)-based gene therapy to locally knock down the Hippo pathway gene Salvador (Sav) in border zone cardiomyocytes in a pig model of ischemia/reperfusion-induced myocardial infarction. Two weeks after myocardial infarction, when pigs had left ventricular systolic dysfunction, we administered AAV9-Sav-short hairpin RNA (shRNA) or a control AAV9 viral vector carrying green fluorescent protein (GFP) directly into border zone cardiomyocytes via catheter-mediated subendocardial injection. Three months after injection, pig hearts treated with a high dose of AAV9-Sav-shRNA exhibited a 14.3% improvement in ejection fraction (a measure of left ventricular systolic function), evidence of cardiomyocyte division, and reduced scar sizes compared to pigs receiving AAV9-GFP. AAV9-Sav-shRNA-treated pig hearts also displayed increased capillary density and reduced cardiomyocyte ploidy. AAV9-Sav-shRNA gene therapy was well tolerated and did not induce mortality. In addition, liver and lung pathology revealed no tumor formation. Local delivery of AAV9-Sav-shRNA gene therapy to border zone cardiomyocytes in pig hearts after myocardial infarction resulted in tissue renewal and improved function and may have utility in treating heart failure.


Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Animais , Dependovirus/genética , Modelos Animais de Doenças , Terapia Genética , Camundongos , Infarto do Miocárdio/terapia , Transdução de Sinais , Suínos
5.
Artigo em Inglês | MEDLINE | ID: mdl-31615785

RESUMO

Within the realm of zoological study, the question of how an organism reaches a specific size has been largely unexplored. Recently, studies performed to understand the regulation of organ size have revealed that both cellular signals and external cues contribute toward the determination of total cell mass within each organ. The establishment of final organ size requires the precise coordination of cell growth, proliferation, and survival throughout development and postnatal life. In the mammalian heart, the regulation of size is biphasic. During development, cardiomyocyte proliferation predominantly determines cardiac growth, whereas in the adult heart, total cell mass is governed by signals that regulate cardiac hypertrophy. Here, we review the current state of knowledge regarding the extrinsic factors and intrinsic mechanisms that control heart size during development. We also discuss the metabolic switch that occurs in the heart after birth and precedes homeostatic control of postnatal heart size.


Assuntos
Cardiomegalia/metabolismo , Coração/crescimento & desenvolvimento , Coração/fisiologia , Hipertrofia/patologia , Zoologia/métodos , Animais , Ciclo Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Tamanho do Órgão , Organogênese , Transdução de Sinais , Somatomedinas/metabolismo
7.
Cancer Res ; 74(15): 4170-82, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24906622

RESUMO

Cancer stem cells (CSC) are purported to initiate and maintain tumor growth. Deregulation of normal stem cell signaling may lead to the generation of CSCs; however, the molecular determinants of this process remain poorly understood. Here we show that the transcriptional coactivator YAP1 is a major determinant of CSC properties in nontransformed cells and in esophageal cancer cells by direct upregulation of SOX9. YAP1 regulates the transcription of SOX9 through a conserved TEAD binding site in the SOX9 promoter. Expression of exogenous YAP1 in vitro or inhibition of its upstream negative regulators in vivo results in elevated SOX9 expression accompanied by the acquisition of CSC properties. Conversely, shRNA-mediated knockdown of YAP1 or SOX9 in transformed cells attenuates CSC phenotypes in vitro and tumorigenicity in vivo. The small-molecule inhibitor of YAP1, verteporfin, significantly blocks CSC properties in cells with high YAP1 and a high proportion of ALDH1(+). Our findings identify YAP1-driven SOX9 expression as a critical event in the acquisition of CSC properties, suggesting that YAP1 inhibition may offer an effective means of therapeutically targeting the CSC population.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fosfoproteínas/metabolismo , Fatores de Transcrição SOX9/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose/fisiologia , Modelos Animais de Doenças , Neoplasias Esofágicas/genética , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , Fatores de Transcrição SOX9/biossíntese , Fatores de Transcrição SOX9/genética , Fatores de Transcrição , Ativação Transcricional , Transfecção , Regulação para Cima , Proteínas de Sinalização YAP
9.
Dev Cell ; 15(4): 603-16, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18854144

RESUMO

The Aurora B kinase is the enzymatic core of the chromosomal passenger complex, which is a critical regulator of mitosis. To identify novel regulators of Aurora B, we performed a genome-wide screen for suppressors of a temperature-sensitive lethal allele of the C. elegans Aurora B kinase AIR-2. This screen uncovered a member of the Afg2/Spaf subfamily of Cdc48-like AAA ATPases as an essential inhibitor of AIR-2 stability and activity. Depletion of CDC-48.3 restores viability to air-2 mutant embryos and leads to abnormally high AIR-2 levels at the late telophase/G1 transition. Furthermore, CDC-48.3 binds directly to AIR-2 and inhibits its kinase activity from metaphase through telophase. While canonical p97/Cdc48 proteins have been assigned contradictory roles in the regulation of Aurora B, our results identify a member of the Afg2/Spaf AAA ATPases as a critical in vivo inhibitor of this kinase during embryonic development.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Caenorhabditis elegans/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Adenosina Trifosfatases/genética , Alelos , Substituição de Aminoácidos , Animais , Aurora Quinase B , Aurora Quinases , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Glutationa Transferase/metabolismo , Lisina/metabolismo , Mitose , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Interferência de RNA , Proteínas Recombinantes/metabolismo , Temperatura , Proteína com Valosina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa