Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 24(8): 3655-3671, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35506306

RESUMO

Fertilizers are costly inputs into crop systems. To compensate for inefficiencies and losses from soil, farmers apply on average double the amount of nitrogen (N) fertilizer acquired by crops. We explored if N efficiency improves with biofertilizers formulated with organic waste, mineral N or plant growth-promoting rhizobacteria (PGPR). We compared treatments receiving mineral N fertilizer or biofertilizers at industry-recommended (100%) or lower (60%) N rates at two commercial sugarcane farms. Biofertilizer at the 60% N-rate generated promising results at one farm with significantly higher biomass and sugar yield than the no-N control, which matched the 100% mineral N treatment. This yield difference was accompanied by a shift in microbial diversity and composition. Correlation analysis confirmed that shifts in microbial communities were strongly linked to soil mineral N levels, as well as crop productivity and yield. Microbial co-occurrence networks further revealed that biofertilizer, including treatments with an added PGPR, can enhance bacterial associations, especially in the context of complex fungal networks. Collectively, the results confirm that biofertilizers have quantifiable effects on soil microbial communities in a crop system setting, which underscores the opportunities for biofertilizers to promote N use efficiency and the circular N economy.


Assuntos
Fertilizantes , Saccharum , Grão Comestível , Fertilizantes/análise , Minerais , Nitrogênio/análise , Solo
2.
Glob Chang Biol ; 24(8): 3344-3356, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29450947

RESUMO

Climate is predicted to change over the 21st century. However, little is known about how climate change can affect soil phosphorus (P) cycle and availability in global terrestrial ecosystems, where P is a key limiting nutrient. With a global database of Hedley P fractions and key-associated physiochemical properties of 760 (seminatural) natural soils compiled from 96 published studies, this study evaluated how climate pattern affected soil P cycle and availability in global terrestrial ecosystems. Overall, soil available P, indexed by Hedley labile inorganic P fraction, significantly decreased with increasing mean annual temperature (MAT) and precipitation (MAP). Hypothesis-oriented path model analysis suggests that MAT negatively affected soil available P mainly by decreasing soil organic P and primary mineral P and increasing soil sand content. MAP negatively affected soil available P both directly and indirectly through decreasing soil primary mineral P; however, these negative effects were offset by the positive effects of MAP on soil organic P and fine soil particles, resulting in a relatively minor total MAP effect on soil available P. As aridity degree was mainly determined by MAP, aridity also had a relatively minor total effect on soil available P. These global patterns generally hold true irrespective of soil depth (≤10 cm or >10 cm) or site aridity index (≤1.0 or >1.0), and were also true for the low-sand (≤50%) soils. In contrast, available P of the high-sand (>50%) soils was positively affected by MAT and aridity and negatively affected by MAP. Our results suggest that temperature and precipitation have contrasting effects on soil P availability and can interact with soil particle size to control soil P availability.


Assuntos
Mudança Climática , Fósforo/análise , Solo/química , Clima , Ecossistema , Umidade , Modelos Teóricos , Chuva , Temperatura
3.
Sci Data ; 5: 180166, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30129932

RESUMO

Soil phosphorus (P) fractions are critical for understanding soil P dynamics and availability. This paper provides a global dataset of soil P fractions separated by the Hedley method. The dataset also includes key environmental factors associated with soil P dynamics and availability, including climate factors, vegetation, soil and parent material types, soil age, and soil physiochemical properties such as particle size, bulk density, pH in water, organic carbon, total nitrogen, and extractable iron and aluminium concentrations. This dataset includes measures of Hedley P fractions of 802 soil samples and was gathered through a literature survey of 99 published studies. Plant availability of each soil P fraction was noted. We anticipate that the global dataset will provide valuable information for studying soil P dynamics and availability, and it will be fused into earth system models to better predict how terrestrial ecosystems will respond to global environmental changes.

4.
Sci Total Environ ; 642: 879-886, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29925058

RESUMO

As an anthropogenic disturbance, prescribed burning may alter the biogeochemistries of nutrients, including nitrogen (N) cycling, in forest ecosystems. This study aimed to examine the changes in N mineralization, nitrification and denitrification rates following prescribed burning in a suburban forest located in subtropical Australia and assess the interactive relationships among soil properties, functional gene abundances and N transformation rates. After a prescribed burning event, soil pH value increased, but soil labile carbon and mineral N contents decreased. Net N mineralization rates, potential nitrification rates and ammonium-oxidizing archaea and bacteria (AOA and AOB) amoA gene abundances in the soils all increased after 3 months of the prescribed burning. However, the abundances of different functional genes related to denitrification changed differently after the prescribed burning. The net N mineralization rates could be best described by soil abiotic properties, rather than functional gene abundances. In contrast, potential denitrification rates were positively related to soil nirK gene abundances. Potential nitrification rates could be influenced by both soil chemical and microbial properties. The results revealed that the prescribed burning might increase N mineralization and nitrification rates in the forest soil.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa