Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 217(1): 151-162, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28892172

RESUMO

The ultraviolet-B (UV-B) photoreceptor UV RESISTANCE LOCUS 8 (UVR8) mediates photomorphogenic responses to UV-B in Arabidopsis through differential gene expression, but little is known about UVR8 in other species. Bryophyte lineages were the earliest diverging embryophytes, thus being the first plants facing the UV-B regime typical of land. We therefore examined whether liverwort and moss species have functional UVR8 proteins and whether they are regulated similarly to Arabidopsis UVR8. We examined the expression, dimer/monomer status, cellular localisation and function of Marchantia polymorpha and Physcomitrella patens UVR8 in experiments with bryophyte tissue and expression of green fluorescent protein (GFP)-UVR8 fusions in Nicotiana leaves and transgenic Arabidopsis. P. patens expresses two UVR8 genes that encode functional proteins, whereas the single M. polymorpha UVR8 gene expresses two transcripts by alternative splicing that encode functional UVR8 variants. P. patens UVR8 proteins form dimers that monomerise and accumulate in the nucleus following UV-B exposure, similar to Arabidopsis UVR8, but M. polymorpha UVR8 has weaker dimers and the proteins appear more constitutively nuclear. We conclude that liverwort and moss species produce functional UVR8 proteins. Although there are differences in expression and regulation of P. patens and M. polymorpha UVR8, the mechanism of UVR8 action is strongly conserved in evolution.


Assuntos
Bryopsida/genética , Marchantia/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Evolução Biológica , Bryopsida/fisiologia , Bryopsida/efeitos da radiação , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Fluorescência Verde , Marchantia/fisiologia , Marchantia/efeitos da radiação , Proteínas de Plantas/genética , Raios Ultravioleta
2.
Plant J ; 88(1): 71-81, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27385642

RESUMO

UV RESISTANCE LOCUS8 (UVR8) is a photoreceptor for ultraviolet-B (UV-B) light that initiates photomorphogenic responses in plants. UV-B photoreception causes rapid dissociation of dimeric UVR8 into monomers that interact with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) to initiate signal transduction. Experiments with purified UVR8 show that the dimer is maintained by salt-bridge interactions between specific charged amino acids across the dimer interface. However, little is known about the importance of these charged amino acids in determining dimer/monomer status and UVR8 function in plants. Here we evaluate the use of different methods to examine dimer/monomer status of UVR8 and show that mutations of several salt-bridge amino acids affect dimer/monomer status, interaction with COP1 and photoreceptor function of UVR8 in vivo. In particular, the salt-bridges formed between arginine 286 and aspartates 96 and 107 are key to dimer formation. Mutation of arginine 286 to alanine impairs dimer formation, interaction with COP1 and function in vivo, whereas mutation to lysine gives a weakened dimer that is functional in vivo, indicating the importance of the positive charge of the arginine/lysine residue for dimer formation. Notably, a UVR8 mutant in which aspartates 96 and 107 are conservatively mutated to asparagine is strongly impaired in dimer formation but mediates UV-B responses in vivo with a similar dose-response relationship to wild-type. The UV-B responsiveness of this mutant does not correlate with dimer formation and monomerisation, indicating that monomeric UVR8 has the potential for UV-B photoreception, initiating signal transduction and responses in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Mutação , Ubiquitina-Proteína Ligases , Raios Ultravioleta
3.
J Biol Chem ; 289(11): 7919-28, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24505139

RESUMO

The Maillard reaction (also referred to as "glycation") takes place between reducing sugars and compounds with free amino groups during thermal processing of foods. In the final stage of the complex reaction cascade, the so-called advanced glycation end products (AGEs) are formed, including proteins with various glycation structures. It has been suggested that some AGEs could have immunostimulatory effects. Here, we aimed to identify specific glycation structure(s) that could influence the T-cell immunogenicity and potential allergenicity of food allergens, using ovalbumin (OVA, an egg white allergen) as a model allergen. OVA was specifically modified with representative glycation structures: N(ε)-carboxymethyl lysine (CM-OVA), N(ε)-carboxyethyl lysine (CE-OVA), pyrraline (Pyr-OVA), or methylglyoxal-derived arginine derivatives (MGO-OVA). As well as AGE-OVA, a crude glycation product in thermal incubation of OVA with glucose, only Pyr-OVA, and not other modified OVAs, was efficiently taken up by bone marrow-derived murine dendritic cells (BMDCs). The uptake of Pyr-OVA was reduced in scavenger receptor class A (SR-A)-deficient BMDCs, but not in cells treated with inhibitors of scavenger receptor class B, galectin-3, or blocking antibodies against CD36, suggesting that pyrraline binds to SR-A. Compared with other modified OVAs, Pyr-OVA induced higher activation of OVA-specific CD4(+) T-cells in co-culture with BMDCs. Furthermore, compared with native OVA, AGE-OVA and Pyr-OVA induced higher IgE production in mice. Pyrraline could induce better allergen uptake by DCs via association with SR-A and subsequently enhance CD4(+) T-cell activation and IgE production. Our findings help us to understand how Maillard reaction enhances the potential allergenicity of food allergens.


Assuntos
Alérgenos/química , Linfócitos T CD4-Positivos/citologia , Hipersensibilidade Alimentar/imunologia , Norleucina/análogos & derivados , Ovalbumina/química , Pirróis/química , Animais , Células da Medula Óssea/citologia , Carboidratos/química , Técnicas de Cocultura , Citocinas/metabolismo , Células Dendríticas/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Ativação Linfocitária , Reação de Maillard , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Norleucina/química , Estrutura Secundária de Proteína , Receptores Depuradores/química
4.
J Am Chem Soc ; 137(25): 8113-20, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25955727

RESUMO

UVR8 is a novel UV-B photoreceptor that regulates a range of plant responses and is already used as a versatile optogenetic tool. Instead of an exogenous chromophore, UVR8 uniquely employs tryptophan side chains to accomplish UV-B photoreception. UV-B absorption by homodimeric UVR8 induces monomerization and hence signaling, but the underlying photodynamic mechanisms are not known. Here, by using a combination of time-resolved fluorescence and absorption spectroscopy from femto- to microseconds, we provide the first experimental evidence for the UVR8 molecular signaling mechanism. The results indicate that tryptophan residues at the dimer interface engage in photoinduced proton coupled electron transfer reactions that induce monomerization.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Proteínas Cromossômicas não Histona/química , Transporte de Elétrons , Elétrons , Luz , Modelos Moleculares , Processos Fotoquímicos , Multimerização Proteica , Prótons , Espectrometria de Fluorescência
5.
Photochem Photobiol Sci ; 14(2): 252-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25274012

RESUMO

Tryptophan residues at the dimer interface of the plant photoreceptor UVR8 promote monomerisation after UV-B absorption via a so far unknown mechanism. Using FTIR spectroscopy we assign light-induced structural transitions of UVR8 mainly to amino acid side chains without major transformations of the secondary structure of the physiologically relevant C-terminal extension. Additionally, we assign the monomerisation associated increase and red shift of the UVR8 tryptophan emission to a photoinduced rearrangement of tryptophan side chains and a relocation of the aspartic acid residues D96 and D107, respectively. By illumination dependent emission spectroscopy we furthermore determined the quantum yield of photoinduced monomerisation to 20 ± 8%.


Assuntos
Proteínas de Arabidopsis/química , Proteínas Cromossômicas não Histona/química , Luz , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Mutação , Processos Fotoquímicos , Conformação Proteica/efeitos da radiação , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Triptofano/química , Triptofano/genética , Vibração
6.
Proc Natl Acad Sci U S A ; 109(40): 16366-70, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22988111

RESUMO

UV-B light initiates photomorphogenic responses in plants. Arabidopsis UV RESISTANCE LOCUS8 (UVR8) specifically mediates these responses by functioning as a UV-B photoreceptor. UV-B exposure converts UVR8 from a dimer to a monomer, stimulates the rapid accumulation of UVR8 in the nucleus, where it binds to chromatin, and induces interaction of UVR8 with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), which functions with UVR8 to control photomorphogenic UV-B responses. Although the crystal structure of UVR8 reveals the basis of photoreception, it does not show how UVR8 initiates signaling through interaction with COP1. Here we report that a region of 27 amino acids from the C terminus of UVR8 (C27) mediates the interaction with COP1. The C27 region is necessary for UVR8 function in the regulation of gene expression and hypocotyl growth suppression in Arabidopsis. However, UVR8 lacking C27 still undergoes UV-B-induced monomerization in both yeast and plant protein extracts, accumulates in the nucleus in response to UV-B, and interacts with chromatin at the UVR8-regulated ELONGATED HYPOCOTYL5 (HY5) gene. The UV-B-dependent interaction of UVR8 and COP1 is reproduced in yeast cells and we show that C27 is both necessary and sufficient for the interaction of UVR8 with the WD40 domain of COP1. Furthermore, we show that C27 interacts in yeast with the REPRESSOR OF UV-B PHOTOMORPHOGENESIS proteins, RUP1 and RUP2, which are negative regulators of UVR8 function. Hence the C27 region has a key role in UVR8 function.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Imunoprecipitação da Cromatina , Proteínas de Fluorescência Verde , Imunoprecipitação , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases , Raios Ultravioleta , Leveduras
7.
Plant Physiol ; 161(1): 547-55, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23129206

RESUMO

Arabidopsis (Arabidopsis thaliana) UV RESISTANCE LOCUS8 (UVR8) is a photoreceptor that specifically mediates photomorphogenic responses to ultraviolet (UV)-B in plants. UV-B photoreception induces the conversion of the UVR8 dimer into a monomer that interacts with the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) protein to regulate gene expression. However, it is not known how the dimeric photoreceptor is regenerated in plants. Here, we show, by using inhibitors of protein synthesis and degradation via the proteasome, that the UVR8 dimer is not regenerated by rapid de novo synthesis following destruction of the monomer. Rather, regeneration occurs by reversion from the monomer to the dimer. However, regeneration of dimeric UVR8 in darkness following UV-B exposure occurs much more rapidly in vivo than in vitro with illuminated plant extracts or purified UVR8, indicating that rapid regeneration requires intact cells. Rapid dimer regeneration in vivo requires protein synthesis, the presence of a carboxyl-terminal 27-amino acid region of UVR8, and the presence of COP1, which is known to interact with the carboxyl-terminal region. However, none of these factors can account fully for the difference in regeneration kinetics in vivo and in vitro, indicating that additional proteins or processes are involved in UVR8 dimer regeneration in vivo.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas Cromossômicas não Histona/metabolismo , Fotorreceptores de Plantas/metabolismo , Biossíntese de Proteínas , Raios Ultravioleta , Aciltransferases/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Cicloeximida/farmacologia , Escuridão , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Extratos Vegetais/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
8.
Clin Chem Lab Med ; 52(1): 61-7, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23492561

RESUMO

Food allergies are abnormal responses to a food triggered by the immune system. The majority of allergenic foods are often subjected to thermal processing before consumption. The Maillard reaction is a non-enzymatic reaction between reducing sugars and compounds with free amino groups such as amino acids and proteins, and takes place during thermal processing and storage of foods. Among many other effects the reaction leads to modification of proteins with various types of glycation structures such as Nε-(carboxymethyl-)lysine (CML), pentosidine, pyrraline and methylglyoxal-H1, which are collectively called advanced glycation end-products (AGEs). Notably, evidence has accumulated that some glycation structures of AGEs function as immune epitopes. Here we discuss the possible involvement of food allergen AGEs in the pathogenesis of food allergies.


Assuntos
Hipersensibilidade Alimentar/patologia , Reação de Maillard , Arginina/análogos & derivados , Arginina/química , Arginina/metabolismo , Células Dendríticas/imunologia , Hipersensibilidade Alimentar/imunologia , Hipersensibilidade Alimentar/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Imunoglobulina E/metabolismo , Lisina/análogos & derivados , Lisina/química , Lisina/imunologia , Lisina/metabolismo , Norleucina/análogos & derivados , Norleucina/química , Norleucina/metabolismo , Pirróis/química , Pirróis/metabolismo , Receptores Depuradores/metabolismo , Linfócitos T/imunologia
9.
Lung Cancer ; 152: 174-184, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33358484

RESUMO

OBJECTIVES: An increasing number of treatment-determining biomarkers has been identified in non-small cell lung cancer (NSCLC) and molecular testing is recommended to enable optimal individualized treatment. However, data on implementation of these recommendations in the "real-world" setting are scarce. This study presents comprehensive details on the frequency, methodology and results of biomarker testing of advanced NSCLC in Germany. PATIENTS AND METHODS: This analysis included 3,717 patients with advanced NSCLC (2,921 non-squamous; 796 squamous), recruited into the CRISP registry at start of systemic therapy by 150 German sites between December 2015 and June 2019. Evaluated were the molecular biomarkers EGFR, ALK, ROS1, BRAF, KRAS, MET, TP53, RET, HER2, as well as expression of PD-L1. RESULTS: In total, 90.5 % of the patients were tested for biomarkers. Testing rates were 92.2 % (non-squamous), 70.7 % (squamous) and increased from 83.2 % in 2015/16 to 94.2% in 2019. Overall testing rates for EGFR, ALK, ROS1, and BRAF were 72.5 %, 74.5 %, 66.1 %, and 53.0 %, respectively (non-squamous). Testing rates for PD-L1 expression were 64.5 % (non-squamous), and 58.5 % (squamous). The most common testing methods were immunohistochemistry (68.5 % non-squamous, 58.3 % squamous), and next-generation sequencing (38.7 % non-squamous, 14.4 % squamous). Reasons for not testing were insufficient tumor material or lack of guideline recommendations (squamous). No alteration was found in 37.8 % (non-squamous), and 57.9 % (squamous), respectively. Most common alterations in non-squamous tumors (all patients/all patients tested for the respective biomarker): KRAS (17.3 %/39.2 %), TP53 (14.1 %/51.4 %), and EGFR (11.0 %/15.1 %); in squamous tumors: TP53 (7.0 %/69.1 %), MET (1.5 %/11.1 %), and EGFR (1.1 %/4.4 %). Median PFS (non-squamous) was 8.7 months (95 % CI 7.4-10.4) with druggable EGFR mutation, and 8.0 months (95 % CI 3.9-9.2) with druggable ALK alterations. CONCLUSION: Testing rates in Germany are high nationwide and acceptable in international comparison, but still leave out a significant portion of patients, who could potentially benefit. Thus, specific measures are needed to increase implementation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Alemanha/epidemiologia , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Mutação , Estudos Prospectivos , Sistema de Registros
12.
Phytochemistry ; 76: 162-71, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22284369

RESUMO

The trifluoromethanesulphonanilides mefluidide and perfluidone are used in agriculture as plant growth regulators and herbicides. Despite the fact that mefluidide and perfluidone have been investigated experimentally for decades, their mode of action is still unknown. In this study, we used a cascade approach of different methods to clarify the mode of action and target site of mefluidide and perfluidone. Physiological profiling using an array of biotests and metabolic profiling in treated plants of Lemna paucicostata suggested a common mode of action in very-long-chain fatty acid (VLCFA) synthesis similar to the known 3-ketoacyl-CoA synthase (KCS) inhibitor metazachlor. Detailed analysis of fatty acid composition in Lemna plants showed a decrease of saturated VLCFAs after treatment with mefluidide and perfluidone. To study compound effects on enzyme level, recombinant KCSs from Arabidopsis thaliana were expressed in Saccharomyces cerevisiae. Enzyme activities of seven KCS proteins from 17 tested were characterized by their fatty acid substrate and product spectrum. For the KCS CER6, the VLCFA product spectrum in vivo, which consists of tetracosanoic acid, hexacosanoic acid and octacosanoic acid, is reported here for the first time. Similar to metazachlor, mefluidide and perfluidone were able to inhibit KCS1, CER6 and CER60 enzyme activities in vivo. FAE1 and KCS2 were inhibited by mefluidide only slightly, whereas metazachlor and perfluidone were strong inhibitors of these enzymes with IC(50) values in µM range. This suggests that KCS enzymes in VLCFA synthesis are the primary herbicide target of mefluidide and perfluidone.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , Acetamidas/farmacologia , Ácidos Graxos/biossíntese , Sulfonas/farmacologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Aciltransferases/química , Aciltransferases/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Araceae/química , Araceae/efeitos dos fármacos , Araceae/enzimologia , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Herbicidas/farmacologia , Metaboloma , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Sementes/química , Sementes/efeitos dos fármacos
13.
Mol Immunol ; 51(1): 42-50, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22377453

RESUMO

The aryl hydrocarbon receptor (AhR) plays a role in modulating dendritic cell (DC) immunity. Iscove's modified Dulbecco's medium (IMDM) contains higher amounts of AhR ligands than RPMI1640 medium. Here, we examined the influence of AhR ligand-containing medium on the maturation and T-cell stimulatory capacity of bone marrow-derived murine dendritic cells (BMDCs). BMDCs generated in IMDM (BMDCs/IMDM) expressed higher levels of co-stimulatory and MHC class II molecules, and lower levels of pattern-recognition receptors, especially toll-like receptor (TLR) 2, TLR4, and scavenger receptor class A (SR-A), compared to BMDCs generated in RPMI1640 medium (BMDCs/RPMI). Cytokine responses against ligands of TLRs and antigen uptake mediated by SR-A were remarkably reduced in BMDCs/IMDM, whereas the T-cell stimulatory capacity of the cells was enhanced, compared to BMDCs/RPMI. The enhanced maturation of BMDCs/IMDM was attenuated in the presence of an AhR antagonist, indicating involvement of AhR in the maturation. Interestingly, BMDCs/IMDM induced Th2 and Th17 differentiation at low and high concentrations of antigen respectively, when co-cultured with CD4(+) T-cells from antigen-specific T-cell receptor transgenic mice. In contrast, BMDCs/RPMI induced Th1 differentiation predominantly in the co-culture. Taken together, optimal selection of medium seems necessary when studying BMDCs, depending on the target receptors on the cell surface of DCs and type of helper T-cells for the co-culture.


Assuntos
Células da Medula Óssea/metabolismo , Meios de Cultura , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Células da Medula Óssea/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/imunologia , Técnicas de Cocultura , Citocinas/biossíntese , Células Dendríticas/citologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Depuradores Classe A/biossíntese , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Receptor 2 Toll-Like/biossíntese , Receptor 4 Toll-Like/biossíntese
14.
Science ; 335(6075): 1492-6, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22323738

RESUMO

The recently identified plant photoreceptor UVR8 (UV RESISTANCE LOCUS 8) triggers regulatory changes in gene expression in response to ultraviolet-B (UV-B) light through an unknown mechanism. Here, crystallographic and solution structures of the UVR8 homodimer, together with mutagenesis and far-UV circular dichroism spectroscopy, reveal its mechanisms for UV-B perception and signal transduction. ß-propeller subunits form a remarkable, tryptophan-dominated, dimer interface stitched together by a complex salt-bridge network. Salt-bridging arginines flank the excitonically coupled cross-dimer tryptophan "pyramid" responsible for UV-B sensing. Photoreception reversibly disrupts salt bridges, triggering dimer dissociation and signal initiation. Mutation of a single tryptophan to phenylalanine retunes the photoreceptor to detect UV-C wavelengths. Our analyses establish how UVR8 functions as a photoreceptor without a prosthetic chromophore to promote plant development and survival in sunlight.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Fotorreceptores de Plantas/química , Fotorreceptores de Plantas/metabolismo , Raios Ultravioleta , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Arginina/química , Proteínas Cromossômicas não Histona/genética , Dicroísmo Circular , Cristalografia por Raios X , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Transdução de Sinal Luminoso , Modelos Moleculares , Mutagênese , Fotorreceptores de Plantas/genética , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Triptofano/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa