Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 140(49): 17086-17094, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30422655

RESUMO

Aggregation of the neuronal protein α-synuclein (αS) is a critical factor in the pathogenesis of Parkinson's disease. Analytical methods to detect post-translational modifications of αS are under development, yet the mechanistic underpinnings of biomarkers like dityrosine formation within αS have yet to be established. In our work, we demonstrate that CuI-bound N-terminally acetylated αS (NAcαS) activates O2 resulting in both intermolecular dityrosine cross-linking within the fibrillar core as well as intramolecular cross-linking within the C-terminal region. Substitution of the H50 residue with a disease relevant Q mutation abolishes intermolecular dityrosine cross-linking and limits the CuI/O2 promoted cross-linking to the C-terminal region. Such a dramatic change in reaction behavior establishes a previously unidentified role for H50 in facilitating intermolecular cross-linking. Involvement of H50 in the reaction profile implies that long-range histidine coordination with the upstream CuI coordination site is necessary to stabilize the transition of CuI to CuII as is a required mechanistic outcome of CuI/O2 reactivity. The aggregation propensity of NAcH50Q-CuI is also enhanced in comparison to NAcαS-CuI, suggesting a potential functional role for both copper and intermolecular cross-linking in attenuating NAcαS fibrillization.


Assuntos
Cobre/química , Radicais Livres/química , Histidina/química , alfa-Sinucleína/metabolismo , Acetilação , Sequência de Aminoácidos , Complexos de Coordenação/química , Humanos , Mutação , Oxigênio/química , Conformação Proteica , Multimerização Proteica , Tirosina/química , alfa-Sinucleína/química , alfa-Sinucleína/genética
2.
J Am Chem Soc ; 140(15): 5028-5032, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29608844

RESUMO

Brain metal dyshomeostasis and altered structural dynamics of the presynaptic protein α-synuclein (αS) are both implicated in the pathology of Parkinson's disease (PD), yet a mechanistic understanding of disease progression in the context of αS structure and metal interactions remains elusive. In this Communication, we detail the influence of iron, a prevalent redox-active brain biometal, on the aggregation propensity and secondary structure of N-terminally acetylated αS (NAcαS), the physiologically relevant form in humans. We demonstrate that under aerobic conditions, Fe(II) commits NAcαS to a PD-relevant oligomeric assembly, verified by the oligomer-selective A11 antibody, that does not have any parallel ß-sheet character but contains a substantial right-twisted antiparallel ß-sheet component based on CD analyses and descriptive deconvolution of the secondary structure. This NAcαS-FeII oligomer does not develop into the ß-sheet fibrils that have become hallmarks of PD, even after extended incubation, as verified by TEM imaging and the fibril-specific OC antibody. Thioflavin T (ThT), a fluorescent probe for ß-sheet fibril formation, also lacks coordination to this antiparallel conformer. We further show that this oligomeric state is not observed when O2 is excluded, indicating a role for iron(II)-mediated O2 chemistry in locking this dynamic protein into a conformation that may have physiological or pathological implications.


Assuntos
Compostos Ferrosos/metabolismo , alfa-Sinucleína/metabolismo , Benzotiazóis , Compostos Ferrosos/química , Corantes Fluorescentes/química , Humanos , Oxirredução , Doença de Parkinson/metabolismo , Tiazóis/química , alfa-Sinucleína/química
3.
Environ Sci Technol ; 52(7): 4275-4284, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29513011

RESUMO

Efficient oxidation from arsenite [As(III)] to arsenate [As(V)], which is less toxic and more readily to be adsorbed by adsorbents, is important for the remediation of arsenic pollution. In this paper, we report a metal organic framework (MIL-100(Fe)) filter to efficiently remove arsenic from synthetic groundwater. With commercially available iron mesh as a substrate, MIL-100(Fe) is implanted through an in situ growth method. MIL-100(Fe) is able to capture As(III) due to its microporous structure, superior surface area, and ample active sites for As adsorption. This approach increases the localized As concentration around the filter, where Fenton-like reactions are initiated by the Fe2+/Fe3+ sites within the MIL-100(Fe) framework to oxidize As(III) to As(V). The mechanism was confirmed by colorimetric detection of H2O2, fluorescence, and electron paramagnetic resonance detection of ·OH. With the aid of oxygen bubbling and Joule heating, the removal efficiency of As(III) can be further boosted. The MIL-100(Fe)-based filter also exhibits satisfactory structural stability and recyclability. Notably, the adsorption capacity of the filter can be regenerated satisfactorily. Our results demonstrate the potential of this filter for the efficient remediation of As contamination in groundwater.


Assuntos
Arsênio , Estruturas Metalorgânicas , Poluentes Químicos da Água , Purificação da Água , Adsorção , Peróxido de Hidrogênio , Ferro , Telas Cirúrgicas
4.
ACS Chem Neurosci ; 10(3): 1402-1410, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30384594

RESUMO

The structurally dynamic amyloidogenic protein α-synuclein (αS) is universally recognized as a key player in Parkinson's disease (PD). Copper, which acts as a neuronal signaling agent, is also an effector of αS structure, aggregation, and localization in vivo. In humans, αS is known to carry an acetyl group on the starting methionine residue, capping the N-terminal free amine which was a known high-affinity CuII binding site. We now report the first detailed characterization data using electron paramagnetic resonance (EPR) spectroscopy to describe the CuII coordination modes of N-terminally acetylated αS (NAcαS). Through use of EPR hyperfine structure analyses and the Peisach-Blumberg correlation, an N3O1 binding mode was established that involves the single histidine residue at position 50 and a lower population of a second CuII-binding mode that may involve a C-terminal contribution. We additionally generated an N-terminally acetylated disease-relevant variant, NAcH50Q, that promotes a shift in the CuII binding site to the C-terminus of the protein. Moreover, fibrillar NAcH50Q-CuII exhibits enhanced parallel ß-sheet character and increased hydrophobic surface area compared to NAcαS-CuII and to both protein variants that lack a coordinated cupric ion. The results presented herein demonstrate the differential impact of distinct CuII binding sites within NAcαS, revealing that C-terminal CuII binding exacerbates the structural consequences of the H50Q missense mutation. Likewise, the global structural modifications that result from N-terminal capping augment the properties of CuII coordination. Hence, consideration of the effect of CuII on NAcαS and NAcH50Q misfolding may shed light on the extrinsic or environmental factors that influence PD pathology.


Assuntos
Cobre/metabolismo , Mutação de Sentido Incorreto/fisiologia , Agregados Proteicos/fisiologia , alfa-Sinucleína/metabolismo , Sítios de Ligação/fisiologia , Cobre/química , Humanos , Estrutura Secundária de Proteína , alfa-Sinucleína/química , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa