Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Gastroenterology ; 158(5): 1402-1416.e2, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31838076

RESUMO

BACKGROUND & AIMS: Trehalose is a disaccharide that might be used in the treatment of cardiometabolic diseases. However, trehalose consumption promotes the expansion of Clostridioides difficile ribotypes that metabolize trehalose via trehalose-6-phosphate hydrolase. Furthermore, brush border and renal trehalases can reduce the efficacy of trehalose by cleaving it into monosaccharides. We investigated whether a trehalase-resistant analogue of trehalose (lactotrehalose) has the same metabolic effects of trehalose without expanding C difficile. METHODS: We performed studies with HEK293 and Caco2 cells, primary hepatocytes from mice, and human intestinal organoids. Glucose transporters were overexpressed in HEK293 cells, and glucose tra2nsport was quantified. Primary hepatocytes were cultured with or without trehalose or lactotrehalose, and gene expression patterns were analyzed. C57B6/J mice were given oral antibiotics and trehalose or lactotrehalose in drinking water, or only water (control), followed by gavage with the virulent C difficile ribotype 027 (CD027); fecal samples were analyzed for toxins A (ToxA) or B (ToxB) by enzyme-linked immunosorbent assay. Other mice were given trehalose or lactotrehalose in drinking water for 2 days before placement on a chow or 60% fructose diet for 10 days. Liver tissues were collected and analyzed by histologic, serum biochemical, RNA sequencing, autophagic flux, and thermogenesis analyses. We quantified portal trehalose and lactotrehalose bioavailability by gas chromatography mass spectrometry. Fecal microbiomes were analyzed by 16S ribosomal RNA sequencing and principal component analyses. RESULTS: Lactotrehalose and trehalose each blocked glucose transport in HEK293 cells and induced a gene expression pattern associated with fasting in primary hepatocytes. Compared with mice on the chow diet, mice on the high-fructose diet had increased circulating cholesterol, higher ratios of liver weight-to-body weight, hepatic lipid accumulation (steatosis), and liver gene expression patterns of carbohydrate-responsive de novo lipogenesis. Mice given lactotrehalose while on the high-fructose diet did not develop any of these features and had increased whole-body caloric expenditure compared with mice given trehalose or water and fed a high-fructose diet. Livers from mice given lactotrehalose had increased transcription of genes that regulate mitochondrial energy metabolism compared with liver from mice given trehalose or controls. Lactotrehalose was bioavailable in venous and portal circulation and fecal samples. Lactotrehalose reduced fecal markers of microbial branched-chain amino acid biosynthesis and increased expression of microbial genes that regulate insulin signaling. In mice given antibiotics followed by CD027, neither lactotrehalose nor trehalose increased levels of the bacteria or its toxin in stool-in fact, trehalose reduced the abundance of CD027 in stool. Lactotrehalose and trehalose reduced markers of inflammation in rectal tissue after CD027 infection. CONCLUSIONS: Lactotrehalose is a trehalase-resistant analogue that increases metabolic parameters, compared with trehalose, without increasing the abundance or virulence of C difficile strain CD027. Trehalase-resistant trehalose analogues might be developed as next-generation fasting-mimetics for the treatment of diabetes and nonalcoholic fatty liver disease.


Assuntos
Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/prevenção & controle , Metabolismo Energético/efeitos dos fármacos , Trealose/farmacologia , Animais , Proteínas de Bactérias/metabolismo , Células CACO-2 , Clostridioides difficile/enzimologia , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/microbiologia , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Dissacaridases/metabolismo , Modelos Animais de Doenças , Jejum/metabolismo , Fezes/microbiologia , Glucose/metabolismo , Células HEK293 , Hepatócitos , Humanos , Mucosa Intestinal/citologia , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Cultura Primária de Células , Trealose/análogos & derivados , Trealose/uso terapêutico
2.
Antimicrob Agents Chemother ; 60(12): 7407-7414, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27736766

RESUMO

The glucose transporter PfHT is essential to the survival of the malaria parasite Plasmodium falciparum and has been shown to be a druggable target with high potential for pharmacological intervention. Identification of compounds against novel drug targets is crucial to combating resistance against current therapeutics. Here, we describe the development of a cell-based assay system readily adaptable to high-throughput screening that directly measures compound effects on PfHT-mediated glucose transport. Intracellular glucose concentrations are detected using a genetically encoded fluorescence resonance energy transfer (FRET)-based glucose sensor. This allows assessment of the ability of small molecules to inhibit glucose uptake with high accuracy (Z' factor of >0.8), thereby eliminating the need for radiolabeled substrates. Furthermore, we have adapted this assay to counterscreen PfHT hits against the human orthologues GLUT1, -2, -3, and -4. We report the identification of several hits after screening the Medicines for Malaria Venture (MMV) Malaria Box, a library of 400 compounds known to inhibit erythrocytic development of P. falciparum Hit compounds were characterized by determining the half-maximal inhibitory concentration (IC50) for the uptake of radiolabeled glucose into isolated P. falciparum parasites. One of our hits, compound MMV009085, shows high potency and orthologue selectivity, thereby successfully validating our assay for antimalarial screening.


Assuntos
Antimaláricos/farmacologia , Transferência Ressonante de Energia de Fluorescência/métodos , Glucose/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Antimaláricos/química , Células Cultivadas , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Expressão Gênica , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Células HEK293 , Humanos , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Bibliotecas de Moléculas Pequenas/química , Especificidade da Espécie , Relação Estrutura-Atividade , Trítio
3.
Antimicrob Agents Chemother ; 59(10): 6203-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26248369

RESUMO

Malaria and HIV infection are coendemic in a large portion of the world and remain a major cause of morbidity and mortality. Growing resistance of Plasmodium species to existing therapies has increased the need for new therapeutic approaches. The Plasmodium glucose transporter PfHT is known to be essential for parasite growth and survival. We have previously shown that HIV protease inhibitors (PIs) act as antagonists of mammalian glucose transporters. While the PI lopinavir is known to have antimalarial activity, the mechanism of action is unknown. We report here that lopinavir blocks glucose uptake into isolated malaria parasites at therapeutically relevant drug levels. Malaria parasites depend on a constant supply of glucose as their primary source of energy, and decreasing the available concentration of glucose leads to parasite death. We identified the malarial glucose transporter PfHT as a target for inhibition by lopinavir that leads to parasite death. This discovery provides a mechanistic basis for the antimalarial effect of lopinavir and provides a direct target for novel drug design with utility beyond the HIV-infected population.


Assuntos
Glucose/antagonistas & inibidores , Inibidores da Protease de HIV/farmacologia , Lopinavir/farmacologia , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Antimaláricos/química , Antimaláricos/farmacologia , Transporte Biológico , Reposicionamento de Medicamentos , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Expressão Gênica , Glucose/metabolismo , Células HEK293 , Inibidores da Protease de HIV/química , Humanos , Concentração Inibidora 50 , Lopinavir/química , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
4.
bioRxiv ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38712231

RESUMO

Single-cell multiomic techniques have sparked immense interest in developing a comprehensive multi-modal map of diverse neuronal cell types and their brain wide projections. However, investigating the spatial organization, transcriptional and epigenetic landscapes of brain wide projection neurons is hampered by the lack of efficient and easily adoptable tools. Here we introduce Projection-TAGs, a retrograde AAV platform that allows multiplex tagging of projection neurons using RNA barcodes. By using Projection-TAGs, we performed multiplex projection tracing of the mouse cortex and high-throughput single-cell profiling of the transcriptional and epigenetic landscapes of the cortical projection neurons. Projection-TAGs can be leveraged to obtain a snapshot of activity-dependent recruitment of distinct projection neurons and their molecular features in the context of a specific stimulus. Given its flexibility, usability, and compatibility, we envision that Projection-TAGs can be readily applied to build a comprehensive multi-modal map of brain neuronal cell types and their projections.

5.
bioRxiv ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38826431

RESUMO

The ventral pallidum (VP) is critical for motivated behaviors. While contemporary work has begun to elucidate the functional diversity of VP neurons, the molecular heterogeneity underlying this functional diversity remains incompletely understood. We used snRNA-seq and in situ hybridization to define the transcriptional taxonomy of VP cell types in mice, macaques, and baboons. We found transcriptional conservation between all three species, within the broader neurochemical cell types. Unique dopaminoceptive and cholinergic subclusters were identified and conserved across both primate species but had no homolog in mice. This harmonized consensus VP cellular atlas will pave the way for understanding the structure and function of the VP and identified key neuropeptides, neurotransmitters, and neuro receptors that could be targeted within specific VP cell types for functional investigations.

6.
Am J Physiol Renal Physiol ; 304(8): F1066-75, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23389456

RESUMO

Tamm-Horsfall protein (THP) is a glycoprotein normally targeted to the apical membrane domain of the kidney's thick ascending limbs (TAL). We previously showed that THP of TAL confers protection to proximal tubules against acute kidney injury (AKI) via a possible cross talk between the two functionally distinct tubular segments. However, the extent, timing, specificity, and functional effects of basolateral translocation of THP during AKI remain unclear. Using an ischemia-reperfusion (IRI) model of murine AKI, we show here that, while THP expression in TAL is downregulated at the peak of injury, it is significantly upregulated 48 h after IRI. Confocal immunofluorescence and immunoelectron microscopy reveal a major redirection of THP during recovery from the apical membrane domain of TAL towards the basolateral domain, interstitium, and basal compartment of S3 segments. This corresponds with increased THP in the serum but not in the urine. The overall epithelial polarity of TAL cells does not change, as evidenced by correct apical targeting of Na(+)-K(+)-2Cl cotransporter (NKCC2) and basolateral targeting of Na(+)-K(+)-ATPase. Compared with the wild-type, THP(-/-) mice show a significantly delayed renal recovery after IRI, due possibly to reduced suppression by THP of proinflammatory cytokines and chemokines such as monocyte chemoattractant protein-1 during recovery. Taken together, our data suggest that THP redistribution in the TAL after AKI is a protein-specific event and its increased interstitial presence negatively regulates the evolving inflammatory signaling in neighboring proximal tubules, thereby enhancing kidney recovery. The increase of serum THP may be used as a prognostic biomarker for recovery from AKI.


Assuntos
Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Alça do Néfron/metabolismo , Nefrite/metabolismo , Circulação Renal/fisiologia , Uromodulina/metabolismo , Animais , Biomarcadores/sangue , Polaridade Celular/fisiologia , Modelos Animais de Doenças , Alça do Néfron/citologia , Alça do Néfron/ultraestrutura , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Microscopia Imunoeletrônica , Nefrite/patologia , Prognóstico , Recuperação de Função Fisiológica/fisiologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais/fisiologia , Uromodulina/sangue , Uromodulina/urina
7.
Biomolecules ; 12(12)2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36551162

RESUMO

Glucose transporter 1 (GLUT1) is believed to solely mediate basal (insulin-independent) glucose uptake in skeletal muscle; yet recent work has demonstrated that mechanical overload, a model of resistance exercise training, increases muscle GLUT1 levels. The primary objective of this study was to determine if GLUT1 is necessary for basal or overload-stimulated muscle glucose uptake. Muscle-specific GLUT1 knockout (mGLUT1KO) mice were generated and examined for changes in body weight, body composition, metabolism, systemic glucose regulation, muscle glucose transporters, and muscle [3H]-2-deoxyglucose uptake ± the GLUT1 inhibitor BAY-876. [3H]-hexose uptake ± BAY-876 was also examined in HEK293 cells-expressing GLUT1-6 or GLUT10. mGLUT1KO mice exhibited no impairments in body weight, lean mass, whole body metabolism, glucose tolerance, basal or overload-stimulated muscle glucose uptake. There was no compensation by the insulin-responsive GLUT4. In mGLUT1KO mouse muscles, overload stimulated higher expression of mechanosensitive GLUT6, but not GLUT3 or GLUT10. In control and mGLUT1KO mouse muscles, 0.05 µM BAY-876 impaired overload-stimulated, but not basal glucose uptake. In the GLUT-HEK293 cells, BAY-876 inhibited glucose uptake via GLUT1, GLUT3, GLUT4, GLUT6, and GLUT10. Collectively, these findings demonstrate that GLUT1 does not mediate basal muscle glucose uptake and suggest that a novel glucose transport mechanism mediates overload-stimulated glucose uptake.


Assuntos
Transportador de Glucose Tipo 1 , Glucose , Músculo Esquelético , Animais , Humanos , Camundongos , Peso Corporal , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Células HEK293 , Insulina/metabolismo , Músculo Esquelético/metabolismo , Camundongos Knockout
8.
Am J Physiol Renal Physiol ; 300(4): F999-1007, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21228114

RESUMO

Tamm-Horsfall protein (THP) is a glycoprotein expressed exclusively in thick ascending limbs (TAL) of the kidney. We recently described a novel protective role of THP against acute kidney injury (AKI) via downregulation of inflammation in the outer medulla. Our current study investigates the mechanistic relationships among the status of THP, inflammation, and tubular injury. Using an ischemia-reperfusion model in wild-type and THP-/- mice, we demonstrate that it is the S3 proximal segments but not the THP-deficient TAL that are the main targets of tubular injury during AKI. The injured S3 segments that are surrounded by neutrophils in THP-/- mice have marked overexpression of neutrophil chemoattractant MIP-2 compared with wild-type counterparts. Neutralizing macrophage inflammatory protein-2 (MIP-2) antibody rescues S3 segments from injury, decreases neutrophil infiltration, and improves kidney function in THP-/- mice. Furthermore, using immunofluorescence volumetric imaging of wild-type mouse kidneys, we show that ischemia alters the intracellular translocation of THP in the TAL cells by partially shifting it from its default apical surface domain to the basolateral domain, the latter being contiguous to the basolateral surface of S3 segments. Concomitant with this is the upregulation, in the basolateral surface of S3 segments, of the scavenger receptor SRB-1, a putative receptor for THP. We conclude that TAL affects the susceptibility of S3 segments to injury at least in part by regulating MIP-2 expression in a THP-dependent manner. Our findings raise the interesting possibility of a direct role of basolaterally released THP on regulating inflammation in S3 segments.


Assuntos
Quimiocina CXCL2/metabolismo , Necrose Tubular Aguda/metabolismo , Alça do Néfron/metabolismo , Traumatismo por Reperfusão/metabolismo , Uromodulina/metabolismo , Animais , Quimiocina CXCL2/genética , Imunofluorescência , Necrose Tubular Aguda/genética , Necrose Tubular Aguda/patologia , Alça do Néfron/patologia , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Regulação para Cima , Uromodulina/genética
9.
PLoS One ; 14(5): e0216457, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31071153

RESUMO

Although the Plasmodium falciparum hexose transporter PfHT has emerged as a promising target for anti-malarial therapy, previously identified small-molecule inhibitors have lacked promising drug-like structural features necessary for development as clinical therapeutics. Taking advantage of emerging insight into structure/function relationships in homologous facilitative hexose transporters and our novel high throughput screening platform, we investigated the ability of compounds satisfying Lipinksi rules for drug likeness to directly interact and inhibit PfHT. The Maybridge HitFinder chemical library was interrogated by searching for compounds that reduce intracellular glucose by >40% at 10 µM. Testing of initial hits via measurement of 2-deoxyglucose (2-DG) uptake in PfHT over-expressing cell lines identified 6 structurally unique glucose transport inhibitors. WU-1 (3-(2,6-dichlorophenyl)-5-methyl-N-[2-(4-methylbenzenesulfonyl)ethyl]-1,2-oxazole-4-carboxamide) blocked 2-DG uptake (IC50 = 5.8 ± 0.6 µM) with minimal effect on the human orthologue class I (GLUTs 1-4), class II (GLUT8) and class III (GLUT5) facilitative glucose transporters. WU-1 showed comparable potency in blocking 2-DG uptake in freed parasites and inhibiting parasite growth, with an IC50 of 6.1 ± 0.8 µM and EC50 of 5.5 ± 0.6 µM, respectively. WU-1 also directly competed for N-[2-[2-[2-[(N-biotinylcaproylamino)ethoxy)ethoxyl]-4-[2-(trifluoromethyl)-3H-diazirin-3-yl]benzoyl]-1,3-bis(mannopyranosyl-4-yloxy)-2-propylamine (ATB-BMPA) binding and inhibited the transport of D-glucose with an IC50 of 5.9 ± 0.8 µM in liposomes containing purified PfHT. Kinetic analysis revealed that WU-1 acts as a non-competitive inhibitor of zero-trans D-fructose uptake. Decreased potency for WU-1 and the known endofacial ligand cytochalasin B was observed when PfHT was engineered to contain an N-terminal FLAG tag. This modification resulted in a concomitant increase in affinity for 4,6-O-ethylidene-α-D-glucose, an exofacially directed transport antagonist, but did not alter the Km for 2-DG. Taken together, these data are consistent with a model in which WU-1 binds preferentially to the transporter in an inward open conformation and support the feasibility of developing potent and selective PfHT antagonists as a novel class of anti-malarial drugs.


Assuntos
Antimaláricos , Proteínas de Transporte de Monossacarídeos , Plasmodium falciparum/metabolismo , Proteínas de Protozoários , Antimaláricos/química , Antimaláricos/farmacologia , Transporte Biológico Ativo/efeitos dos fármacos , Glucose/metabolismo , Células HEK293 , Humanos , Ligantes , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Engenharia de Proteínas , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Bibliotecas de Moléculas Pequenas
10.
Sci Rep ; 8(1): 6475, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691457

RESUMO

GLUT transgenic and knockout mice have provided valuable insight into the role of facilitative glucose transporters (GLUTs) in cardiovascular and metabolic disease, but compensatory physiological changes can hinder interpretation of these models. To determine whether adaptations occur in response to GLUT inhibition in the failing adult heart, we chronically treated TG9 mice, a transgenic model of dilated cardiomyopathy and heart failure, with the GLUT inhibitor ritonavir. Glucose tolerance was significantly improved with chronic treatment and correlated with decreased adipose tissue retinol binding protein 4 (RBP4) and resistin. A modest improvement in lifespan was associated with decreased cardiomyocyte brain natriuretic peptide (BNP) expression, a marker of heart failure severity. GLUT1 and -12 protein expression was significantly increased in left ventricular (LV) myocardium in ritonavir-treated animals. Supporting a switch from fatty acid to glucose utilization in these tissues, fatty acid transporter CD36 and fatty acid transcriptional regulator peroxisome proliferator-activated receptor α (PPARα) mRNA were also decreased in LV and soleus muscle. Chronic ritonavir also increased cardiac output and dV/dt-d in C57Bl/6 mice following ischemia-reperfusion injury. Taken together, these data demonstrate compensatory metabolic adaptation in response to chronic GLUT blockade as a means to evade deleterious changes in the failing heart.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glucose/metabolismo , Animais , Glicemia/metabolismo , Doença da Artéria Coronariana/metabolismo , Modelos Animais de Doenças , Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/fisiologia , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , PPAR alfa/metabolismo , Ritonavir/farmacologia
11.
Sci Rep ; 6: 38586, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27922102

RESUMO

Trehalose is a disaccharide demonstrated to mitigate disease burden in multiple murine neurodegenerative models. We recently revealed that trehalose rapidly induces hepatic autophagy and abrogates hepatic steatosis by inhibiting hexose transport via the SLC2A family of facilitative transporters. Prior studies, however, postulate that intracellular trehalose is sufficient to induce cellular autophagy. The objective of the current study was to identify the means by which trehalose accesses the hepatocyte cytoplasm, and define the distal signaling mechanisms by which trehalose induces autophagy. We provide gas chromatographic/mass spectrometric, fluorescence microscopic and radiolabeled uptake evidence that trehalose traverses the plasma membrane via SLC2A8 (GLUT8), a homolog of the trehalose transporter-1 (Tret1). Moreover, GLUT8-deficient hepatocytes and GLUT8-deficient mice exposed to trehalose resisted trehalose-induced AMP-activated protein kinase (AMPK) phosphorylation and autophagic induction in vitro and in vivo. Although trehalose profoundly attenuated mTORC1 signaling, trehalose-induced mTORC1 suppression was insufficient to activate autophagy in the absence of AMPK or GLUT8. Strikingly, transient, heterologous Tret1 overexpression reconstituted autophagic flux and AMPK signaling defects in GLUT8-deficient hepatocyte cultures. Together, these data suggest that cytoplasmic trehalose access is carrier-mediated, and that GLUT8 is a mammalian trehalose transporter required for hepatocyte trehalose-induced autophagy and signal transduction.


Assuntos
Autofagia , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Trealose/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Sequência de Aminoácidos , Animais , Autofagia/efeitos dos fármacos , Transporte Biológico , Linhagem Celular , Ácidos Graxos/metabolismo , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/química , Proteínas Facilitadoras de Transporte de Glucose/genética , Hepatócitos/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Modelos Moleculares , Conformação Molecular , Fosforilação , Ligação Proteica , Transdução de Sinais , Trealose/química , Trealose/farmacologia , Triglicerídeos/metabolismo
12.
Sci Signal ; 9(416): ra21, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26905426

RESUMO

Trehalose is a naturally occurring disaccharide that has gained attention for its ability to induce cellular autophagy and mitigate diseases related to pathological protein aggregation. Despite decades of ubiquitous use as a nutraceutical, preservative, and humectant, its mechanism of action remains elusive. We showed that trehalose inhibited members of the SLC2A (also known as GLUT) family of glucose transporters. Trehalose-mediated inhibition of glucose transport induced AMPK (adenosine 5'-monophosphate-activated protein kinase)-dependent autophagy and regression of hepatic steatosis in vivo and a reduction in the accumulation of lipid droplets in primary murine hepatocyte cultures. Our data indicated that trehalose triggers beneficial cellular autophagy by inhibiting glucose transport.


Assuntos
Autofagia , Fígado Gorduroso/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Trealose/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Proteínas Facilitadoras de Transporte de Glucose/genética , Células HEK293 , Células Hep G2 , Humanos , Camundongos , Camundongos Knockout
13.
J Pharm Sci ; 100(11): 4722-33, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21660973

RESUMO

The farnesoid X receptor (FXR) belongs to one of the human nuclear receptor superfamilies that regulate gene transcription. FXR is widely expressed in liver, gall bladder, intestine, kidney, and adrenal glands. It serves as a key controller of bile acid homeostasis through its regulation of bile acid synthesis, conjugation, secretion, and absorption. FXR is also known to play a role in lipid regulation, triglyceride synthesis, and lipoprotein metabolism and clearance. We used a commercially available FXR agonist, GW4064, as a model compound to assess preclinical efficacy in two species (hamster and cynomolgus monkey). The crystalline GW4064, however, was found to have limited solubility, which resulted in poor oral bioavailability. This made it difficult to assess in vivo efficacy at the exposure levels desired. The physiochemical properties of GW4064 were assessed and both salt and self-emulsifying drug delivery system (SEDDS) formulation were developed and tested. The SEDDS formulation was found to greatly improve the oral bioavailability of GW4064, and permitted the evaluation of FXR agonist target efficacy.


Assuntos
Isoxazóis/farmacologia , Receptores Citoplasmáticos e Nucleares/agonistas , Animais , Cromatografia Líquida de Alta Pressão , Cricetinae , Avaliação Pré-Clínica de Medicamentos , Macaca fascicularis , Mesocricetus , Solubilidade , Espectrometria de Massas em Tandem
14.
J Biol Chem ; 279(51): 53145-51, 2004 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-15471850

RESUMO

Type I diabetes mellitus is an autoimmune disease characterized by the selective destruction of the insulin-secreting beta-cell found in pancreatic islets of Langerhans. Cytokines such as interleukin-1 (IL-1), interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) mediate beta-cell dysfunction and islet degeneration, in part, through the induction of the inducible isoform of nitric-oxide synthase and the production of nitric oxide by beta-cells. Cytokines also stimulate the expression of the inducible isoform of cyclooxygenase, COX-2, and the production of prostaglandin E(2) (PGE(2)) by rat and human islets; however, the role of increased COX-2 expression and PGE(2) production in mediating cytokine-induced inhibition of islet metabolic function and viability has been incompletely characterized. In this study, we have shown that treatment of rat islets with IL-1beta or human islets with a cytokine mixture containing IL-1beta + IFN-gamma +/- TNF-alpha stimulates COX-2 expression and PGE(2) formation in a time-dependent manner. Co-incubation of rat and human islets with selective COX-2 inhibitors SC-58236 and Celecoxib, respectively, attenuated cytokine-induced PGE(2) formation. However, these inhibitors failed to prevent cytokine-mediated inhibition of insulin secretion or islet degeneration. These findings indicate that selective inhibition of COX-2 activity does not protect rat and human islets from cytokine-induced beta-cell dysfunction and islet degeneration and, furthermore, that islet production of PGE(2) does not mediate these inhibitory and destructive effects.


Assuntos
Citocinas/metabolismo , Ilhotas Pancreáticas/enzimologia , Ilhotas Pancreáticas/patologia , Isoenzimas/fisiologia , Prostaglandina-Endoperóxido Sintases/fisiologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Western Blotting , Celecoxib , Células Cultivadas , Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase/farmacologia , Citocinas/biossíntese , Dinoprostona/metabolismo , Relação Dose-Resposta a Droga , Glucose/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Interferon gama/metabolismo , Interleucina-1/metabolismo , Ilhotas Pancreáticas/citologia , Proteínas de Membrana , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Nitritos/metabolismo , Isoformas de Proteínas , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Sulfonamidas/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa