Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 184(13): 3486-3501.e21, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34077751

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a World Health Organization priority pathogen. CCHFV infections cause a highly lethal hemorrhagic fever for which specific treatments and vaccines are urgently needed. Here, we characterize the human immune response to natural CCHFV infection to identify potent neutralizing monoclonal antibodies (nAbs) targeting the viral glycoprotein. Competition experiments showed that these nAbs bind six distinct antigenic sites in the Gc subunit. These sites were further delineated through mutagenesis and mapped onto a prefusion model of Gc. Pairwise screening identified combinations of non-competing nAbs that afford synergistic neutralization. Further enhancements in neutralization breadth and potency were attained by physically linking variable domains of synergistic nAb pairs through bispecific antibody (bsAb) engineering. Although multiple nAbs protected mice from lethal CCHFV challenge in pre- or post-exposure prophylactic settings, only a single bsAb, DVD-121-801, afforded therapeutic protection. DVD-121-801 is a promising candidate suitable for clinical development as a CCHFV therapeutic.


Assuntos
Anticorpos Neutralizantes/imunologia , Febre Hemorrágica da Crimeia/imunologia , Sobreviventes , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Antígenos Virais/metabolismo , Fenômenos Biofísicos , Chlorocebus aethiops , Mapeamento de Epitopos , Epitopos/metabolismo , Feminino , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Febre Hemorrágica da Crimeia/prevenção & controle , Humanos , Imunoglobulina G/metabolismo , Masculino , Camundongos , Testes de Neutralização , Ligação Proteica , Engenharia de Proteínas , Proteínas Recombinantes/imunologia , Células Vero , Proteínas Virais/química
2.
Clin Infect Dis ; 72(10): 1701-1708, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32516409

RESUMO

BACKGROUND: Human encephalitis represents a medical challenge from a diagnostic and therapeutic point of view. We investigated the cause of 2 fatal cases of encephalitis of unknown origin in immunocompromised patients. METHODS: Untargeted metatranscriptomics was applied on the brain tissue of 2 patients to search for pathogens (viruses, bacteria, fungi, or protozoans) without a prior hypothesis. RESULTS: Umbre arbovirus, an orthobunyavirus never previously identified in humans, was found in 2 patients. In situ hybridization and reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) showed that Umbre virus infected neurons and replicated at high titers. The virus was not detected in cerebrospinal fluid by RT-qPCR. Viral sequences related to Koongol virus, another orthobunyavirus close to Umbre virus, were found in Culex pipiens mosquitoes captured in the south of France where the patients had spent some time before the onset of symptoms, demonstrating the presence of the same clade of arboviruses in Europe and their potential public health impact. A serological survey conducted in the same area did not identify individuals positive for Umbre virus. The absence of seropositivity in the population may not reflect the actual risk of disease transmission in immunocompromised individuals. CONCLUSIONS: Umbre arbovirus can cause encephalitis in immunocompromised humans and is present in Europe.


Assuntos
Agamaglobulinemia , Encefalite , Orthobunyavirus , Vírus , Animais , Europa (Continente) , França/epidemiologia , Humanos , Orthobunyavirus/genética
3.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29899102

RESUMO

Zoonotic highly pathogenic avian influenza viruses (HPAIV) have raised serious public health concerns of a novel pandemic. These strains emerge from low-pathogenic precursors by the acquisition of a polybasic hemagglutinin (HA) cleavage site, the prime virulence determinant. However, required coadaptations of the HA early in HPAIV evolution remained uncertain. To address this question, we generated several HA1/HA2 chimeras and point mutants of an H5N1 clade 2.2.2 HPAIV and an H5N1 low-pathogenic strain. Initial surveys of 3,385 HPAIV H5 HA sequences revealed frequencies of 0.5% for the single amino acids 123R and 124I but a frequency of 97.5% for the dual combination. This highly conserved dual motif is still retained in contemporary H5 HPAIV, including the novel H5NX reassortants carrying neuraminidases of different subtypes, like the H5N8 and the zoonotic H5N6 strains. Remarkably, the earliest Asian H5N1 HPAIV, the Goose/Guangdong strains from 1996/1997, carried 123R only, whereas 124I appeared later in 1997. Experimental reversion in the HPAIV HA to the two residues 123S and124T, characteristic of low-pathogenic strains, prevented virus rescue, while the single substitutions attenuated the virus in both chicken and mice considerably, accompanied by a decreased HA fusion pH. This increased pH sensitivity of H5 HPAIV enables HA-mediated membrane fusion at a higher endosomal pH. Therefore, this HA adaptation may permit infection of cells with less-acidic endosomes, e.g., within the respiratory tract, resulting in an extended organ tropism. Taken together, HA coadaptation to increased acid sensitivity promoted the early evolution of H5 Goose/Guangdong-like HPAIV strains and is still required for their zoonotic potential.IMPORTANCE Zoonotic highly pathogenic avian influenza viruses (HPAIV) have raised serious public health concerns of a novel pandemic. Their prime virulence determinant is the polybasic hemagglutinin (HA) cleavage site. However, required coadaptations in the HA (and other genes) remained uncertain. Here, we identified the dual motif 123R/124I in the HA head that increases the activation pH of HA-mediated membrane fusion, essential for virus genome release into the cytoplasm. This motif is extremely predominant in H5 HPAIV and emerged already in the earliest 1997 H5N1 HPAIV. Reversion to 123S or 124T, characteristic of low-pathogenic strains, attenuated the virus in chicken and mice, accompanied by a decreased HA activation pH. This increased pH sensitivity of H5 HPAIV extends the viral tropism to cells with less-acidic endosomes, e.g., within the respiratory tract. Therefore, early HA adaptation to increased acid sensitivity promoted the emergence of H5 Goose/Guangdong-like HPAIV strains and is required for their zoonotic potential.


Assuntos
Sequência Conservada , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Internalização do Vírus , Animais , Análise por Conglomerados , Evolução Molecular , Gansos , Concentração de Íons de Hidrogênio , Filogenia , Análise de Sequência de DNA , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
4.
Proc Natl Acad Sci U S A ; 112(21): 6694-9, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25947153

RESUMO

Kaposi sarcoma herpesvirus (KSHV) persists as a latent nuclear episome in dividing host cells. This episome is tethered to host chromatin to ensure proper segregation during mitosis. For duplication of the latent genome, the cellular replication machinery is recruited. Both of these functions rely on the constitutively expressed latency-associated nuclear antigen (LANA) of the virus. Here, we report the crystal structure of the KSHV LANA DNA-binding domain (DBD) in complex with its high-affinity viral target DNA, LANA binding site 1 (LBS1), at 2.9 Šresolution. In contrast to homologous proteins such as Epstein-Barr virus nuclear antigen 1 (EBNA-1) of the related γ-herpesvirus Epstein-Barr virus, specific DNA recognition by LANA is highly asymmetric. In addition to solving the crystal structure, we found that apart from the two known LANA binding sites, LBS1 and LBS2, LANA also binds to a novel site, denoted LBS3. All three sites are located in a region of the KSHV terminal repeat subunit previously recognized as a minimal replicator. Moreover, we show that the LANA DBD can coat DNA of arbitrary sequence by virtue of a characteristic lysine patch, which is absent in EBNA-1 of the Epstein-Barr virus. Likely, these higher-order assemblies involve the self-association of LANA into supermolecular spirals. One such spiral assembly was solved as a crystal structure of 3.7 Šresolution in the absence of DNA. On the basis of our data, we propose a model for the controlled nucleation of higher-order LANA oligomers that might contribute to the characteristic subnuclear KSHV microdomains ("LANA speckles"), a hallmark of KSHV latency.


Assuntos
Antígenos Virais/química , Herpesvirus Humano 8/química , Proteínas Nucleares/química , Sequência de Aminoácidos , Antígenos Virais/genética , Antígenos Virais/metabolismo , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , DNA Viral/genética , DNA Viral/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Eletricidade Estática , Difração de Raios X
5.
PLoS Pathog ; 9(10): e1003640, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146614

RESUMO

Kaposi sarcoma-associated herpesvirus (KSHV) establishes a lifelong latent infection and causes several malignancies in humans. Murine herpesvirus 68 (MHV-68) is a related γ2-herpesvirus frequently used as a model to study the biology of γ-herpesviruses in vivo. The KSHV latency-associated nuclear antigen (kLANA) and the MHV68 mLANA (orf73) protein are required for latent viral replication and persistence. Latent episomal KSHV genomes and kLANA form nuclear microdomains, termed 'LANA speckles', which also contain cellular chromatin proteins, including BRD2 and BRD4, members of the BRD/BET family of chromatin modulators. We solved the X-ray crystal structure of the C-terminal DNA binding domains (CTD) of kLANA and MHV-68 mLANA. While these structures share the overall fold with the EBNA1 protein of Epstein-Barr virus, they differ substantially in their surface characteristics. Opposite to the DNA binding site, both kLANA and mLANA CTD contain a characteristic lysine-rich positively charged surface patch, which appears to be a unique feature of γ2-herpesviral LANA proteins. Importantly, kLANA and mLANA CTD dimers undergo higher order oligomerization. Using NMR spectroscopy we identified a specific binding site for the ET domains of BRD2/4 on kLANA. Functional studies employing multiple kLANA mutants indicate that the oligomerization of native kLANA CTD dimers, the characteristic basic patch and the ET binding site on the kLANA surface are required for the formation of kLANA 'nuclear speckles' and latent replication. Similarly, the basic patch on mLANA contributes to the establishment of MHV-68 latency in spleen cells in vivo. In summary, our data provide a structural basis for the formation of higher order LANA oligomers, which is required for nuclear speckle formation, latent replication and viral persistence.


Assuntos
Antígenos Virais/metabolismo , Cromatina/metabolismo , Herpesvirus Humano 8/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Rhadinovirus/fisiologia , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Animais , Antígenos Virais/química , Antígenos Virais/genética , Proteínas de Ciclo Celular , Cromatina/genética , Cromatina/virologia , Proteínas Cromossômicas não Histona , Cristalografia por Raios X , Células HEK293 , Células HeLa , Herpesvirus Humano 8/química , Humanos , Camundongos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Quaternária de Proteína , Rhadinovirus/química , Baço/metabolismo , Baço/virologia , Relação Estrutura-Atividade , Fatores de Transcrição/química , Fatores de Transcrição/genética , Proteínas Virais/química , Proteínas Virais/genética , Latência Viral/fisiologia
6.
Cell Rep ; 42(3): 112142, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36827185

RESUMO

La Crosse virus, responsible for pediatric encephalitis in the United States, and Schmallenberg virus, a highly teratogenic veterinary virus in Europe, belong to the large Orthobunyavirus genus of zoonotic arthropod-borne pathogens distributed worldwide. Viruses in this under-studied genus cause CNS infections or fever with debilitating arthralgia/myalgia syndromes, with no effective treatment. The main surface antigen, glycoprotein Gc (∼1,000 residues), has a variable N-terminal half (GcS) targeted by the patients' antibody response and a conserved C-terminal moiety (GcF) responsible for membrane fusion during cell entry. Here, we report the X-ray structure of post-fusion La Crosse and Schmallenberg virus GcF, revealing the molecular determinants for hairpin formation and trimerization required to drive membrane fusion. We further experimentally confirm the role of residues in the fusion loops and in a vestigial endoplasmic reticulum (ER) translocation sequence at the GcS-GcF junction. The resulting knowledge provides essential molecular underpinnings for future development of potential therapeutic treatments and vaccines.


Assuntos
Vírus La Crosse , Orthobunyavirus , Humanos , Criança , Orthobunyavirus/genética , Orthobunyavirus/química , Glicoproteínas de Membrana , Fusão de Membrana , Glicoproteínas
7.
Nat Commun ; 14(1): 5885, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735161

RESUMO

Following endocytosis, enveloped viruses employ the changing environment of maturing endosomes as cues to promote endosomal escape, a process often mediated by viral glycoproteins. We previously showed that both high [K+] and low pH promote entry of Bunyamwera virus (BUNV), the prototypical bunyavirus. Here, we use sub-tomogram averaging and AlphaFold, to generate a pseudo-atomic model of the whole BUNV glycoprotein envelope. We unambiguously locate the Gc fusion domain and its chaperone Gn within the floor domain of the spike. Furthermore, viral incubation at low pH and high [K+], reminiscent of endocytic conditions, results in a dramatic rearrangement of the BUNV envelope. Structural and biochemical assays indicate that pH 6.3/K+ in the absence of a target membrane elicits a fusion-capable triggered intermediate state of BUNV GPs; but the same conditions induce fusion when target membranes are present. Taken together, we provide mechanistic understanding of the requirements for bunyavirus entry.


Assuntos
Vírus Bunyamwera , Orthobunyavirus , Bioensaio , Sinais (Psicologia) , Concentração de Íons de Hidrogênio
8.
Emerg Microbes Infect ; 12(1): 2146537, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36356059

RESUMO

African swine fever virus (ASFV), a large and complex DNA-virus circulating between soft ticks and indigenous suids in sub-Saharan Africa, has made its way into swine populations from Europe to Asia. This virus, causing a severe haemorrhagic disease (African swine fever) with very high lethality rates in wild boar and domestic pigs, has demonstrated a remarkably high genetic stability for over 10 years. Consequently, analyses into virus evolution and molecular epidemiology often struggled to provide the genetic basis to trace outbreaks while few resources have been dedicated to genomic surveillance on whole-genome level. During its recent incursion into Germany in 2020, ASFV has unexpectedly diverged into five clearly distinguishable linages with at least ten different variants characterized by high-impact mutations never identified before. Noticeably, all new variants share a frameshift mutation in the 3' end of the DNA polymerase PolX gene O174L, suggesting a causative role as possible mutator gene. Although epidemiological modelling supported the influence of increased mutation rates, it remains unknown how fast virus evolution might progress under these circumstances. Moreover, a tailored Sanger sequencing approach allowed us, for the first time, to trace variants with genomic epidemiology to regional clusters. In conclusion, our findings suggest that this new factor has the potential to dramatically influence the course of the ASFV pandemic with unknown outcome. Therefore, our work highlights the importance of genomic surveillance of ASFV on whole-genome level, the need for high-quality sequences and calls for a closer monitoring of future phenotypic changes of ASFV.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/epidemiologia , Sus scrofa , Europa (Continente)/epidemiologia , Alemanha
9.
Curr Opin Virol ; 53: 101204, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35151116

RESUMO

Rabies is a severe viral infection that causes an acute encephalomyelitis, which presents a case fatality of nearly 100% after the manifestation of neurological clinical signs. Rabies can be efficiently prevented with post-exposure prophylaxis (PEP), composed of vaccines and anti-rabies immunoglobulins (RIGs); however, no treatment exists for symptomatic rabies. The PEP protocol faces access and implementation obstacles in resource-limited settings, which could be partially overcome by substituting RIGs for monoclonal antibodies (mAbs). mAbs offer lower production costs, consistent supply availability, long-term storage/stability, and an improved safety profile. Here we summarize the key features of the different available mAbs against rabies, focusing on their application in PEP and highlighting their potential in a novel therapeutic approach.


Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Humanos , Fatores Imunológicos , Profilaxia Pós-Exposição/métodos , Raiva/prevenção & controle
10.
Science ; 375(6576): 104-109, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34793197

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is the most widespread tick-borne zoonotic virus, with a 30% case fatality rate in humans. Structural information is lacking in regard to the CCHFV membrane fusion glycoprotein Gc­the main target of the host neutralizing antibody response­as well as antibody­mediated neutralization mechanisms. We describe the structure of prefusion Gc bound to the antigen-binding fragments (Fabs) of two neutralizing antibodies that display synergy when combined, as well as the structure of trimeric, postfusion Gc. The structures show the two Fabs acting in concert to block membrane fusion, with one targeting the fusion loops and the other blocking Gc trimer formation. The structures also revealed the neutralization mechanism of previously reported antibodies against CCHFV, providing the molecular underpinnings essential for developing CCHFV­specific medical countermeasures for epidemic preparedness.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/imunologia , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Cristalografia por Raios X , Epitopos/química , Epitopos/imunologia , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Modelos Moleculares , Testes de Neutralização , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus
11.
Plant Mol Biol ; 74(1-2): 19-32, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20512402

RESUMO

The maize Activator/Dissociation (Ac/Ds) transposable element system was introduced into sugar beet. The autonomous Ac and non-autonomous Ds element excise from the T-DNA vector and integrate at novel positions in the sugar beet genome. Ac and Ds excisions generate footprints in the donor T-DNA that support the hairpin model for transposon excision. Two complete integration events into genomic sugar beet DNA were obtained by IPCR. Integration of Ac leads to an eight bp duplication, while integration of Ds in a homologue of a sugar beet flowering locus gene did not induce a duplication. The molecular structure of the target site indicates Ds integration into a double strand break. Analyses of transposase transcription using RT-PCR revealed low amounts of alternatively spliced mRNAs. The fourth intron of the transposase was found to be partially misspliced. Four different splice products were identified. In addition, the second and third exon were found to harbour two and three novel introns, respectively. These utilize each the same splice donor but several alternative splice acceptor sites. Using the SplicePredictor online tool, one of the two introns within exon two is predicted to be efficiently spliced in maize. Most interestingly, splicing of this intron together with the four major introns of Ac would generate a transposase that lacks the DNA binding domain and two of its three nuclear localization signals, but still harbours the dimerization domain.


Assuntos
Beta vulgaris/enzimologia , Beta vulgaris/genética , Transposases/genética , Zea mays/enzimologia , Zea mays/genética , Processamento Alternativo , Sequência de Bases , Primers do DNA/genética , Elementos de DNA Transponíveis , DNA Bacteriano/genética , DNA de Plantas/genética , Vetores Genéticos , Plantas Geneticamente Modificadas , Sítios de Splice de RNA , Nicotiana/enzimologia , Nicotiana/genética , Ativação Transcricional
12.
Nat Commun ; 11(1): 596, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001700

RESUMO

Rabies virus (RABV) causes fatal encephalitis in more than 59,000 people yearly. Upon the bite of an infected animal, the development of clinical disease can be prevented with post-exposure prophylaxis (PEP), which includes the administration of Rabies immunoglobulin (RIG). However, the high cost and limited availability of serum-derived RIG severely hamper its wide use in resource-limited countries. A safe low-cost alternative is provided by using broadly neutralizing monoclonal antibodies (bnAbs). Here we report the X-ray structure of one of the most potent and most broadly reactive human bnAbs, RVC20, in complex with its target domain III of the RABV glycoprotein (G). The structure reveals that the RVC20 binding determinants reside in a highly conserved surface of G, rationalizing its broad reactivity. We further show that RVC20 blocks the acid-induced conformational change required for membrane fusion. Our results may guide the future development of direct antiviral small molecules for Rabies treatment.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Glicoproteínas/metabolismo , Perfusão , Vírus da Raiva/imunologia , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Afinidade de Anticorpos , Linhagem Celular , Cristalografia por Raios X , Epitopos/genética , Humanos , Mutagênese/genética , Ligação Proteica
13.
Elife ; 92020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32314955

RESUMO

The World Health Organization has included three bunyaviruses posing an increasing threat to human health on the Blueprint list of viruses likely to cause major epidemics and for which no, or insufficient countermeasures exist. Here, we describe a broadly applicable strategy, based on llama-derived single-domain antibodies (VHHs), for the development of bunyavirus biotherapeutics. The method was validated using the zoonotic Rift Valley fever virus (RVFV) and Schmallenberg virus (SBV), an emerging pathogen of ruminants, as model pathogens. VHH building blocks were assembled into highly potent neutralizing complexes using bacterial superglue technology. The multimeric complexes were shown to reduce and prevent virus-induced morbidity and mortality in mice upon prophylactic administration. Bispecific molecules engineered to present two different VHHs fused to an Fc domain were further shown to be effective upon therapeutic administration. The presented VHH-based technology holds great promise for the development of bunyavirus antiviral therapies.


Assuntos
Antivirais/farmacologia , Infecções por Bunyaviridae , Anticorpos de Domínio Único/farmacologia , Animais , Anticorpos Neutralizantes/farmacologia , Camelídeos Americanos , Feminino , Humanos , Masculino , Camundongos
14.
Nat Commun ; 10(1): 879, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787296

RESUMO

Orthobunyaviruses (OBVs) form a distinct genus of arthropod-borne bunyaviruses that can cause severe disease upon zoonotic transmission to humans. Antigenic drift or genome segment re-assortment have in the past resulted in new pathogenic OBVs, making them potential candidates for causing emerging zoonoses in the future. Low-resolution electron cryo-tomography studies have shown that OBV particles feature prominent trimeric spikes, but their molecular organization remained unknown. Here we report X-ray crystallography studies of four different OBVs showing that the spikes are formed by an N-terminal extension of the fusion glycoprotein Gc. Using Schmallenberg virus, a recently emerged OBV, we also show that the projecting spike is the major target of the neutralizing antibody response, and provide X-ray structures in complex with two protecting antibodies. We further show that immunization of mice with the spike domains elicits virtually sterilizing immunity, providing fundamental knowledge essential in the preparation for potential newly emerging OBV zoonoses.


Assuntos
Anticorpos Neutralizantes/imunologia , Orthobunyavirus/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Estruturas Virais/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Chlorocebus aethiops , Cricetinae , Cristalografia por Raios X , Feminino , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estrutura Terciária de Proteína , Ruminantes/virologia , Células Vero
15.
J Mol Biol ; 431(24): 4922-4940, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31711961

RESUMO

The retroviral envelope-derived proteins syncytin-1 and syncytin-2 (syn1 and syn2) drive placentation in humans by forming a syncytiotophoblast, a structure allowing for an exchange interface between maternal and fetal blood during pregnancy. Despite their essential role, little is known about the molecular mechanism underlying the syncytins' function. We report here the X-ray structures of the syn1 and syn2 transmembrane subunit ectodomains, featuring a 6-helix bundle (6HB) typical of the post-fusion state of gamma-retrovirus and filovirus fusion proteins. Contrary to the filoviruses, for which the fusion glycoprotein was crystallized both in the post-fusion and in the spring-loaded pre-fusion form, the highly unstable nature of the syncytins' prefusion form has precluded structural studies. We undertook a proline-scanning approach searching for regions in the syn1 6HB central helix that tolerate the introduction of helix-breaker residues and still fold correctly in the pre-fusion form. We found that there is indeed such a region, located two α-helical turns downstream a stutter in the central coiled-coil helix - precisely where the breaks of the spring-loaded helix of the filoviruses map. These mutants were fusion-inactive as they cannot form the 6HB, similar to the "SOSIP" mutant of HIV Env that allowed the high-resolution structural characterization of its labile pre-fusion form. These results now open a new window of opportunity to engineer more stable variants of the elusive pre-fusion trimer of the syncytins and other gamma-retroviruses envelope proteins for structural characterization.


Assuntos
Produtos do Gene env/química , Modelos Moleculares , Proteínas da Gravidez/química , Conformação Proteica , Sequência de Aminoácidos , Cristalografia por Raios X , Gammaretrovirus , Produtos do Gene env/metabolismo , Humanos , Proteínas da Gravidez/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas do Envelope Viral/química
16.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 11): 1570-4, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25372834

RESUMO

The latency-associated nuclear antigen (LANA) is the latent origin-binding protein and chromatin anchor of the Kaposi's sarcoma herpesvirus (KSHV/HHV-8) genome. Its C-terminal domain (CTD) binds sequence-specifically to the viral origin of replication, whereas the N-terminal domain links it to nucleosomes of cellular chromatin for long-term persistence in dividing host cells. Here, the crystallization and X-ray data acquisition of a mutant LANA CTD in complex with its wild-type target DNA LBS1 is described. This report describes the rational protein engineering for successful co-crystallization with DNA and X-ray diffraction data collection at room temperature on the high-brilliance third-generation synchrotron PETRA III at DESY, Germany.


Assuntos
Antígenos Virais/química , DNA Viral/química , Herpesvirus Humano 8/química , Proteínas Nucleares/química , Sarcoma de Kaposi/virologia , Antígenos Virais/metabolismo , Cristalização , DNA Viral/metabolismo , Herpesvirus Humano 8/metabolismo , Proteínas Nucleares/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa