Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS Pathog ; 15(6): e1007842, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31199850

RESUMO

G3BP-1 and -2 (hereafter referred to as G3BP) are multifunctional RNA-binding proteins involved in stress granule (SG) assembly. Viruses from diverse families target G3BP for recruitment to replication or transcription complexes in order to block SG assembly but also to acquire pro-viral effects via other unknown functions of G3BP. The Old World alphaviruses, including Semliki Forest virus (SFV) and chikungunya virus (CHIKV) recruit G3BP into viral replication complexes, via an interaction between FGDF motifs in the C-terminus of the viral non-structural protein 3 (nsP3) and the NTF2-like domain of G3BP. To study potential proviral roles of G3BP, we used human osteosarcoma (U2OS) cell lines lacking endogenous G3BP generated using CRISPR-Cas9 and reconstituted with a panel of G3BP1 mutants and truncation variants. While SFV replicated with varying efficiency in all cell lines, CHIKV could only replicate in cells expressing G3BP1 variants containing both the NTF2-like and the RGG domains. The ability of SFV to replicate in the absence of G3BP allowed us to study effects of different domains of the protein. We used immunoprecipitation to demonstrate that that both NTF2-like and RGG domains are necessary for the formation a complex between nsP3, G3BP1 and the 40S ribosomal subunit. Electron microscopy of SFV-infected cells revealed that formation of nsP3:G3BP1 complexes via the NTF2-like domain was necessary for clustering of cytopathic vacuoles (CPVs) and that the presence of the RGG domain was necessary for accumulation of electron dense material containing G3BP1 and nsP3 surrounding the CPV clusters. Clustered CPVs also exhibited localised high levels of translation of viral mRNAs as detected by ribopuromycylation staining. These data confirm that G3BP is a ribosomal binding protein and reveal that alphaviral nsP3 uses G3BP to concentrate viral replication complexes and to recruit the translation initiation machinery, promoting the efficient translation of viral mRNAs.


Assuntos
Proteínas de Transporte/metabolismo , Febre de Chikungunya/metabolismo , Vírus Chikungunya/fisiologia , DNA Helicases/metabolismo , Iniciação Traducional da Cadeia Peptídica , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Vírus da Floresta de Semliki/fisiologia , Replicação Viral , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Febre de Chikungunya/genética , Febre de Chikungunya/patologia , Cricetinae , DNA Helicases/genética , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Domínios Proteicos , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo
2.
J Virol ; 91(18)2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28701392

RESUMO

Alphaviruses are positive-strand RNA viruses expressing their replicase as a polyprotein, P1234, which is cleaved to four final products, nonstructural proteins nsP1 to nsP4. The replicase proteins together with viral RNA and host factors form membrane invaginations termed spherules, which act as the replication complexes producing progeny RNAs. We have previously shown that the wild-type alphavirus replicase requires a functional RNA template and active polymerase to generate spherule structures. However, we now find that specific partially processed forms of the replicase proteins alone can give rise to membrane invaginations in the absence of RNA or replication. The minimal requirement for spherule formation was the expression of properly cleaved nsP4, together with either uncleaved P123 or with the combination of nsP1 and uncleaved P23. These inactive spherules were morphologically less regular than replication-induced spherules. In the presence of template, nsP1 plus uncleaved P23 plus nsP4 could efficiently assemble active replication spherules producing both negative-sense and positive-sense RNA strands. P23 alone did not have membrane affinity, but could be recruited to membrane sites in the presence of nsP1 and nsP4. These results define the set of viral components required for alphavirus replication complex assembly and suggest the possibility that it could be reconstituted from separately expressed nonstructural proteins.IMPORTANCE All positive-strand RNA viruses extensively modify host cell membranes to serve as efficient platforms for viral RNA replication. Alphaviruses and several other groups induce protective membrane invaginations (spherules) as their genome factories. Most positive-strand viruses produce their replicase as a polyprotein precursor, which is further processed through precise and regulated cleavages. We show here that specific cleavage intermediates of the alphavirus replicase can give rise to spherule structures in the absence of viral RNA. In the presence of template RNA, the same intermediates yield active replication complexes. Thus, partially cleaved replicase proteins play key roles that connect replication complex assembly, membrane deformation, and the different stages of RNA synthesis.


Assuntos
Alphavirus/enzimologia , Interações Hospedeiro-Patógeno , Biogênese de Organelas , Multimerização Proteica , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral , Ligação Proteica
3.
J Virol ; 90(3): 1687-92, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26581991

RESUMO

The alphaviruses induce membrane invaginations known as spherules as their RNA replication sites. Here, we show that inactivation of any function (polymerase, helicase, protease, or membrane association) essential for RNA synthesis also prevents the generation of spherule structures in a Semliki Forest virus trans-replication system. Mutants capable of negative-strand synthesis, including those defective in RNA capping, gave rise to spherules. Recruitment of RNA to membranes in the absence of spherule formation was not detected.


Assuntos
Membrana Celular/metabolismo , RNA Viral/metabolismo , Vírus da Floresta de Semliki/fisiologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
4.
J Gen Virol ; 97(6): 1395-1407, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26953094

RESUMO

During virus multiplication, the viral genome is recognized and recruited for replication based on specific cis-acting elements. Here, we dissected the important cis-acting sequence elements in Semliki Forest virus RNA by using a trans-replication system. As the viral replicase is expressed from a separate plasmid, the template RNA can be freely modified in this system. We show that the cis-acting element at the beginning of the non-structural protein 1 (nsP1) coding region together with the end of the 3' UTR are the minimal requirements for minus-strand synthesis. To achieve a high level of replication, the native 5' UTR was also needed. The virus-induced membranous replication compartments (spherules) were only detected when a replication-competent template was present with an active replicase and minus strands were produced. No translation could be detected from the minus strands, suggesting that they are segregated from the cytoplasm. Minus strands could not be recruited directly to initiate the replication process. Thus, there is only one defined pathway for replication, starting with plus-strand recognition followed by concomitant spherule formation and minus-strand synthesis.


Assuntos
RNA Viral/biossíntese , RNA Viral/genética , Vírus da Floresta de Semliki/genética , Vírus da Floresta de Semliki/fisiologia , Replicação Viral , Animais , Linhagem Celular , Cricetinae , Ligação Proteica , Biossíntese de Proteínas , RNA Polimerase Dependente de RNA/metabolismo , Transcrição Gênica
5.
Methods ; 90: 49-56, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25916619

RESUMO

Electron microscopy (EM) is a powerful tool to study structural changes within cells caused e.g. by ectopic protein expression, gene silencing or virus infection. Correlative light and electron microscopy (CLEM) has proven to be useful in cases when it is problematic to identify a particular cell among a majority of unaffected cells at the EM level. In this technique the cells of interest are first identified by fluorescence microscopy and then further processed for EM. CLEM has become crucial when studying positive-strand RNA virus replication, as it takes place in nanoscale replication sites on specific cellular membranes. Here we have employed CLEM for Semliki Forest virus (SFV) replication studies both by transfecting viral replication components to cells or by infecting different cell types. For the transfection-based system, we developed an RNA template that can be detected in the cells even in the absence of replication and thus allows exploration of lethal mutations in viral proteins. In infected mammalian and mosquito cells, we were able to find replication-positive cells by using a fluorescently labeled viral protein even in the cases of low infection efficiency. The fluorescent region within these cells was shown to correspond to an area rich in modified membranes. These results show that CLEM is a valuable technique for studying virus replication and membrane modifications at the ultrastructural level.


Assuntos
Microscopia Eletrônica/métodos , Vírus da Floresta de Semliki/ultraestrutura , Replicação Viral , Aedes/virologia , Animais , Linhagem Celular , Cricetinae , Interações Hospedeiro-Patógeno , Microscopia de Fluorescência , Vírus da Floresta de Semliki/fisiologia
6.
J Virol ; 87(16): 9125-34, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23760239

RESUMO

The replication complexes of positive-strand RNA viruses are always associated with cellular membranes. The morphology of the replication-associated membranes is altered in different ways in different viral systems, but many viruses induce small membrane invaginations known as spherules as their replication sites. We show here that for Semliki Forest virus (SFV), an alphavirus, the size of the spherules is tightly connected with the length of the replicating RNA template. Cells with different model templates, expressed in trans and copied by the viral replicase, were analyzed with correlative light and electron microscopy. It was demonstrated that the viral-genome-sized template of 11.5 kb induced spherules that were ∼58 nm in diameter, whereas a template of 6 kb yielded ∼39-nm spherules. Different sizes of viral templates were replicated efficiently in trans, as assessed by radioactive labeling and Northern blotting. The replication of two different templates, in cis and trans, yielded two size classes of spherules in the same cell. These results indicate that RNA plays a crucial determining role in spherule assembly for SFV, in direct contrast with results from other positive-strand RNA viruses, in which either the presence of viral RNA or the RNA size do not contribute to spherule formation.


Assuntos
Membrana Celular/ultraestrutura , Membrana Celular/virologia , Substâncias Macromoleculares/metabolismo , Substâncias Macromoleculares/ultraestrutura , RNA Viral/genética , Vírus da Floresta de Semliki/fisiologia , Replicação Viral , Animais , Linhagem Celular , Cricetinae , Microscopia
7.
J Virol ; 85(10): 4739-51, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21389137

RESUMO

For positive-strand RNA viruses, the viral genomic RNA also acts as an mRNA directing the translation of the replicase proteins of the virus. Replication takes place in association with cytoplasmic membranes, which are heavily modified to create specific replication compartments. Here we have expressed by plasmid DNA transfection the large replicase polyprotein of Semliki Forest virus (SFV) in mammalian cells from a nonreplicating mRNA and provided a separate RNA containing the replication signals. The replicase proteins were able to efficiently and specifically replicate the template in trans, leading to accumulation of RNA and marker gene products expressed from the template RNA. The replicase proteins and double-stranded RNA replication intermediates localized to structures similar to those seen in SFV-infected cells. Using correlative light electron microscopy (CLEM) with fluorescent marker proteins to relocate those transfected cells, in which active replication was ongoing, abundant membrane modifications, representing the replication complex spherules, were observed both at the plasma membrane and in intracellular endolysosomes. Thus, replication complexes are faithfully assembled and localized in the trans-replication system. We demonstrated, using CLEM, that the replication proteins alone or a polymerase-negative polyprotein mutant together with the template did not give rise to spherule formation. Thus, the trans-replication system is suitable for cell biological dissection and examination in a mammalian cell environment, and similar systems may be possible for other positive-strand RNA viruses.


Assuntos
RNA Viral/metabolismo , Vírus da Floresta de Semliki/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Animais , Linhagem Celular , Membrana Celular/virologia , Cricetinae , Endossomos/virologia , Microscopia Eletrônica/métodos
8.
Cell Microbiol ; 13(12): 1975-95, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21899700

RESUMO

Non-enveloped picornavirus echovirus 1 (EV1) clusters its receptor α2ß1 integrin and causes their internalization and accumulation in α2ß1 integrin enriched multivesicular bodies (α2-MVBs). Our results here show that these α2-MVBs are distinct from acidic late endosomes/lysosomes by several criteria: (i) live intra-endosomal pH measurements show that α2-MVBs are not acidic, (ii) they are not positive for the late endosomal marker LBPA or Dil-LDL internalized to lysosomes, and (iii) simultaneous stimulation of epidermal growth factor receptor (EGFR) and α2ß1 integrin clustering leads to their accumulation in separate endosomes. EGFR showed downregulation between 15 min and 2 h, whereas accumulation of α2ß1 integrin/EV1 led to an increase of integrin fluorescence in cytoplasmic vesicles further suggesting that EV1 pathway is separate from the lysosomal downregulation pathway. In addition, the results demonstrate the involvement of ESCRTs in the biogenesis of α2-MVBs. Overexpression of dominant-negative form of VPS4 inhibited biogenesis of α2-MVBs and efficiently prevented EV1 infection. Furthermore, α2-MVBs were positive for some members of ESCRTs such as Hrs, VPS37A and VPS24 and the siRNA treatment of TSG101, VPS37A and VPS24 inhibited EV1 infection. Our results show that the non-enveloped EV1 depends on biogenesis of novel multivesicular structures for successful infection.


Assuntos
Vesículas Citoplasmáticas/virologia , Infecções por Echovirus/virologia , Enterovirus Humano B/patogenicidade , Internalização do Vírus , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Receptores ErbB/metabolismo , Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Integrina alfa2beta1/metabolismo , RNA Interferente Pequeno , Receptores Virais/metabolismo , Fatores de Tempo , Transfecção , Ligação Viral
9.
Virus Res ; 234: 44-57, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28104453

RESUMO

Alphaviruses are typically arthropod-borne, and many are important pathogens such as chikungunya virus. Alphaviruses encode four nonstructural proteins (nsP1-4), initially produced as a polyprotein P1234. nsP4 is the core RNA-dependent RNA polymerase but all four nsPs are required for RNA synthesis. The early replication complex (RC) formed by the polyprotein P123 and nsP4 synthesizes minus RNA strands, and the late RC composed of fully processed nsP1-nsP4 is responsible for the production of genomic and subgenomic plus strands. Different parts of nsP4 recognize the promoters for minus and plus strands but the binding also requires the other nsPs. The alphavirus polymerase has been purified and is capable of de novo RNA synthesis only in the presence of the other nsPs. The purified nsP4 also has terminal adenylyltransferase activity, which may generate the poly(A) tail at the 3' end of the genome. Membrane association of the nsPs is vital for replication, and alphaviruses induce membrane invaginations called spherules, which form a microenvironment for RNA synthesis by concentrating replication components and protecting double-stranded RNA intermediates. The RCs isolated as crude membrane preparations are active in RNA synthesis in vitro, but high-resolution structure of the RC has not been achieved, and thus the arrangement of viral and possible host components remains unknown. For some alphaviruses, Ras-GTPase-activating protein (Src-homology 3 (SH3) domain)-binding proteins (G3BPs) and amphiphysins have been shown to be essential for RNA replication and are present in the RCs. Host factors offer an additional target for antivirals, as only few alphavirus polymerase inhibitors have been described.


Assuntos
Alphavirus/enzimologia , Alphavirus/fisiologia , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral , Membrana Celular/enzimologia , Membrana Celular/virologia , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas não Estruturais Virais/metabolismo
10.
PLoS One ; 11(3): e0151616, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26963103

RESUMO

Chikungunya virus (CHIKV; genus Alphavirus, family Togaviridae) has recently caused several major outbreaks affecting millions of people. There are no licensed vaccines or antivirals, and the knowledge of the molecular biology of CHIKV, crucial for development of efficient antiviral strategies, remains fragmentary. CHIKV has a 12 kb positive-strand RNA genome, which is translated to yield a nonstructural (ns) or replicase polyprotein. CHIKV structural proteins are expressed from a subgenomic RNA synthesized in infected cells. Here we have developed CHIKV trans-replication systems, where replicase expression and RNA replication are uncoupled. Bacteriophage T7 RNA polymerase or cellular RNA polymerase II were used for production of mRNAs for CHIKV ns polyprotein and template RNAs, which are recognized by CHIKV replicase and encode for reporter proteins. CHIKV replicase efficiently amplified such RNA templates and synthesized large amounts of subgenomic RNA in several cell lines. This system was used to create tagged versions of ns proteins including nsP1 fused with enhanced green fluorescent protein and nsP4 with an immunological tag. Analysis of these constructs and a matching set of replicon vectors revealed that the replicases containing tagged ns proteins were functional and maintained their subcellular localizations. When cells were co-transfected with constructs expressing template RNA and wild type or tagged versions of CHIKV replicases, formation of characteristic replicase complexes (spherules) was observed. Analysis of mutations associated with noncytotoxic phenotype in CHIKV replicons showed that a low level of RNA replication is not a pre-requisite for reduced cytotoxicity. The CHIKV trans-replicase does not suffer from genetic instability and represents an efficient, sensitive and reliable tool for studies of different aspects of CHIKV RNA replication process.


Assuntos
Vírus Chikungunya/fisiologia , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerase II/metabolismo , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Animais , Linhagem Celular , Cricetinae , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerase II/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética
11.
PLoS One ; 8(4): e60930, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23577178

RESUMO

Cancer initiation and progression involve microRNAs that can function like tumor suppressors and oncogenes. The functional significance of most miRNAs is currently unknown. To determine systematically which microRNAs are essential for glioma growth, we screened a precursor microRNA library in three human glioblastoma and one astroglial cell line model systems. The most prominent and consistent cell proliferation-reducing hits were validated in secondary screening with an additional apoptosis endpoint. The functional screening data were integrated in the miRNA expression data to find underexpressed true functional tumor suppressor miRNAs. In addition, we used miRNA-target gene predictions and combined siRNA functional screening data to find the most probable miRNA-target gene pairs with a similar functional effect on proliferation. Nine novel functional miRNAs (hsa-miR-129, -136, -145, -155, -181b, -342-5p, -342-3p, -376a/b) in GBM cell lines were validated for their importance in glioma cell growth, and similar effects for six target genes (ROCK1, RHOA, MET, CSF1R, EIF2AK1, FGF7) of these miRNAs were shown functionally. The clinical significance of the functional hits was validated in miRNA expression data from the TCGA glioblastoma multiforme (GBM) tumor cohort. Five tumor suppressor miRNAs (hsa-miR-136, -145, -342, -129, -376a) showed significant underexpression in clinical GBM tumor samples from the TCGA GBM cohort further supporting the role of these miRNAs in vivo. Most importantly, higher hsa-miR-145 expression in GBM tumors yielded significantly better survival (p<0.005) in a subset of patients thus validating it as a genuine tumor suppressor miRNA. This systematic functional profiling provides important new knowledge about functionally relevant miRNAs in GBM biology and may offer new targets for treating glioma.


Assuntos
Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Humanos , Células Neoplásicas Circulantes
12.
Mol Oncol ; 7(3): 392-401, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23253899

RESUMO

About 20% of breast cancers are characterized by amplification and overexpression of the HER2 oncogene. Although significant progress has been achieved for treating such patients with HER2 inhibitor trastuzumab, more than half of the patients respond poorly or become resistant to the treatment. Since the HER2 amplicon at 17q12 contains multiple genes, we have systematically explored the role of the HER2 co-amplified genes in breast cancer cell growth and their relation to trastuzumab resistance. We integrated aCGH data of the HER2 amplicon from 71 HER2 positive breast tumors and 10 cell lines with systematic functional RNA interference analysis of 23 core amplicon genes with several phenotypic endpoints in a panel of trastuzumab responding and non-responding HER2 positive breast cancer cells. Silencing of HER2 caused a greater growth arrest and apoptosis in the responding compared to the non-responding cell lines, indicating that the resistant cells are inherently less dependent on the HER2 pathway. Several other genes in the amplicon also showed a more pronounced effect when silenced; indicating that expression of HER2 co-amplified genes may be needed to sustain the growth of breast cancer cells. Importantly, co-silencing of STARD3, GRB7, PSMD3 and PERLD1 together with HER2 led to an additive inhibition of cell viability as well as induced apoptosis. These studies indicate that breast cancer cells may become addicted to the amplification of several genes that reside in the HER2 amplicon. The simultaneous targeting of these genes may increase the efficacy of the anti-HER2 therapies and possibly also counteract trastuzumab resistance. The observed additive effects seem to culminate to both apoptosis and cell proliferation pathways indicating that these pathways may be interesting targets for combinatorial treatment of HER2+ breast cancers.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Mama/efeitos dos fármacos , Receptor ErbB-2/genética , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Amplificação de Genes , Humanos , Interferência de RNA , Trastuzumab
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa