Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L344-L352, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252663

RESUMO

We have discovered intrinsically fibrogenic mesenchymal progenitor cells (MPCs) in the human idiopathic pulmonary fibrosis (IPF) lung. IPF MPCs display a durably distinct transcriptome, suggesting that they have undergone epigenetic modifications. Prior studies indicate that the chromatin remodeler Brg1 associates with the arginine methyltransferase PRMT5 to epigenetically regulate transcription factors. We hypothesize that a Brg1/PRMT5 nuclear complex epigenetically regulates critical nodes in IPF MPC self-renewal signaling networks. IPF and control MPCs were isolated from primary mesenchymal cell lines established from IPF and control patients. RNA-sequencing identified increased expression of the FOXO1 transcription factor in IPF MPCs compared with controls, a result we confirmed by Q-PCR and Western blot analysis. Immunoprecipitation identified a CD44/Brg1/PRMT5 nuclear complex in IPF MPCs. Chromatin immunoprecipitation assays showed that PRMT5 and its methylation mark H3R2me2 are enriched on the FOXO1 promoter. We show that loss of Brg1 and PRMT5 function decreases FOXO1 expression and impairs IPF MPC self-renewal, and that loss of FOXO1 function decreases IPF MPC self-renewal and expression of the SOX2 and OCT4 stemness markers. Our findings indicate that the FOXO1 gene is overexpressed in IPF MPCs in a CD44/Brg1/PRMT5 nuclear complex-dependent manner. Our data suggest that Brg1 alters chromatin accessibility, enriching PRMT5 occupancy on the FOXO1 promoter, and PRMT5 methylates histone H3 arginine 2 (H3R2) on the FOXO1 promoter, increasing its expression. Our data are in accord with the concept that this coordinated interplay is responsible for promoting IPF MPC self-renewal and maintaining a critical pool of fibrogenic MPCs that drive IPF progression.NEW & NOTEWORTHY Our research offers valuable understanding regarding the epigenetic control of IPF MPC. The data we obtained strongly support the idea that the coordination between chromatin remodeling and histone methylation plays a key role in regulating transcription factors. Specifically, our findings indicate that FOXO1, an essential transcription factor, likely governs the self-renewal of IPF MPC, which is crucial for maintaining a critical pool of fibrogenic MPCs. This interplay could be an important therapeutic target.


Assuntos
Fibrose Pulmonar Idiopática , Células-Tronco Mesenquimais , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Cromatina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 324(6): L849-L862, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121574

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease. We discovered fibrogenic mesenchymal progenitor cells (MPCs) in the lungs of IPF patients that display cell-autonomous fibrogenicity and drive fibrotic progression. In a study of the IPF MPC nuclear proteome, we identified DNA damage as one of the most altered functions in IPF MPCs. In prior work we found that IL-8 drives IPF MPC self-renewal. IL-8 can promote replicative stress and DNA damage and induce senescence through the CXCR2 receptor. We hypothesized that IL-8 promotes DNA damage-mediated senescence in IPF MPCs. We show that IL-8 induces DNA damage and promotes IPF MPC senescence. We discovered that IL-8 concurrently promotes senescence and upregulation of the programmed death ligand 1 (PD-L1) in a CXCR2-dependent manner. Disruption of programmed cell death protein-1 (PD-1)-PD-L1 interaction promotes natural killer (NK) cell killing of IPF MPCs in vitro and arrests IPF MPC-mediated experimental lung fibrosis in vivo. Immunohistochemical (IHC) analysis of IPF lung tissue identified PD-L1-expressing IPF MPCs codistributing with NK cells and ß-galactosidase-positive cells. Our data indicate that IL-8 simultaneously promotes IPF MPC DNA damage-induced senescence and high PD-L1 expression, enabling IPF MPCs to elude immune cell-targeted removal. Disruption of PD-1-PD-L1 interaction may limit IPF MPC-mediated fibrotic progression.NEW & NOTEWORTHY Here we show that IL-8 concurrently promotes senescence and upregulation of PD-L1 in IPF MPCs. IHC analysis identifies the presence of senescent IPF MPCs intermingled with NK cells in the fibroblastic focus, suggesting that senescent MPCs elude immune cell surveillance. We demonstrate that disruption of PD-1/PD-L1 interaction promotes NK cell killing of IPF MPCs and arrests IPF MPC-mediated experimental lung fibrosis. Disruption of PD-1/PD-L1 interaction may be one means to limit fibrotic progression.


Assuntos
Fibrose Pulmonar Idiopática , Células-Tronco Mesenquimais , Humanos , Antígeno B7-H1/metabolismo , Proliferação de Células , Senescência Celular/genética , Fibrose , Fibrose Pulmonar Idiopática/metabolismo , Interleucina-8/metabolismo , Células-Tronco Mesenquimais/metabolismo , Receptor de Morte Celular Programada 1/metabolismo
3.
Int J Mol Sci ; 24(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37569873

RESUMO

Cancer markers are measurable molecules in the blood or tissue that are produced by tumor cells or immune cells in response to cancer progression. They play an important role in clinical diagnosis, prognosis, and anti-drug monitoring. Although DNA, RNA, and even physical images have been used, proteins continue to be the most common marker. There are currently no specific markers for lung cancer. Metastatic lung cancer, particularly non-small-cell lung cancer (NSCLC), is one of the most common causes of death. SFPQ, YY1, RTN4, RICTOR, LARP6, and HELLS are expressed at higher levels in cells from NSCLC than in control or cells from inflammatory diseases. SFPQ shows the most difference between the three cell types. Furthermore, the cytoplasmic isoform of SFPQ is only found in advanced cancers. We have developed ELISAs to detect SFPQ and the long and short isoforms. Evidence has shown that the short isoform exists primarily in cancers. Furthermore, immunocytometry studies and IHC analysis have revealed that SFPQ levels are consistent with ELISA results. In addition, enhanced DNA methylation in the SFPQ gene may facilitate the SFPQ expression differences between control and cancer cells. Considering this, elevated SFPQ level and the isoform location could serve as a cancer diagnostic and prognostic marker.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Metilação de DNA , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
4.
Proteomics ; 22(13-14): e2200018, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35633524

RESUMO

IPF is a progressive fibrotic lung disease whose pathogenesis remains incompletely understood. We have previously discovered pathologic mesenchymal progenitor cells (MPCs) in the lungs of IPF patients. IPF MPCs display a distinct transcriptome and create sustained interstitial fibrosis in immune deficient mice. However, the precise pathologic alterations responsible for this fibrotic phenotype remain to be uncovered. Quantitative mass spectrometry and interactomics is a powerful tool that can define protein alterations in specific subcellular compartments that can be implemented to understand disease pathogenesis. We employed quantitative mass spectrometry and interactomics to define protein alterations in the nuclear compartment of IPF MPCs compared to control MPCs. We identified increased nuclear levels of PARP1, CDK1, and BACH1. Interactomics implicated PARP1, CDK1, and BACH1 as key hub proteins in the DNA damage/repair, differentiation, and apoptosis signaling pathways respectively. Loss of function and inhibitor studies demonstrated important roles for PARP1 in DNA damage/repair, CDK1 in regulating IPF MPC stemness and self-renewal, and BACH1 in regulating IPF MPC viability. Our quantitative mass spectrometry studies combined with interactomic analysis uncovered key roles for nuclear PARP1, CDK1, and BACH1 in regulating IPF MPC fibrogenicity.


Assuntos
Fibrose Pulmonar Idiopática , Células-Tronco Mesenquimais , Animais , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteína Nodal/genética , Proteína Nodal/metabolismo , Fenótipo , Proteoma/metabolismo , Proteômica
5.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L926-L941, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33719561

RESUMO

Despite modest improvement in patient outcomes from recent advances in pharmacotherapy targeting fibrogenic signaling pathways, idiopathic pulmonary fibrosis (IPF) remains a major unsolved clinical problem. One reason for this is that available antifibrotic agents slow down but do not arrest fibrotic progression. To arrest fibrotic progression, its obligatory drivers need to be identified. We previously discovered that fibrogenic mesenchymal progenitor cells (MPCs) are key drivers of fibrotic progression in IPF, serving as cells of origin for disease-mediating myofibroblasts. IPF MPCs have high levels of nuclear S100A4, which interacts with the proteasome to promote p53 degradation and self-renewal. However, the mechanism underlying S100A4 accumulation in the nucleus of IPF MPCs remains unknown. Here we show that hyaluronan (HA) is present in the fibroblastic focus together with CD44-expressing MPCs and that ligation of CD44 by HA triggers S100A4 nuclear translocation to support IPF MPC self-renewal. The mechanism involves HA-mediated formation of a CD44/S100A4/transportin 1 complex, which promotes S100A4 nuclear import. In a humanized mouse model of pulmonary fibrosis, IPF MPC fibrogenicity was significantly attenuated by 1) knockdown of CD44 or 2) introduction of an S100A4 mutant construct that prevents S100A4 nuclear import. These data indicate that signaling through the HA/CD44/S100A4 axis is an integral component of IPF MPC fibrogenicity.


Assuntos
Núcleo Celular/metabolismo , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Transdução de Sinais , Animais , Núcleo Celular/genética , Núcleo Celular/patologia , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Receptores de Hialuronatos/genética , Ácido Hialurônico/genética , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Células-Tronco Mesenquimais/patologia , Camundongos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/genética , beta Carioferinas/genética , beta Carioferinas/metabolismo
6.
Am J Respir Crit Care Med ; 198(4): 486-496, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29579397

RESUMO

RATIONALE: The lung extracellular matrix (ECM) in idiopathic pulmonary fibrosis (IPF) mediates progression of fibrosis by decreasing fibroblast expression of miR-29 (microRNA-29), a master negative regulator of ECM production. The molecular mechanism is undefined. IPF-ECM is stiffer than normal. Stiffness drives fibroblast ECM production in a YAP (yes-associated protein)-dependent manner, and YAP is a known regulator of miR-29. Therefore, we tested the hypothesis that negative regulation of miR-29 by IPF-ECM was mediated by mechanotransduction of stiffness. OBJECTIVES: To determine how IPF-ECM negatively regulates miR-29. METHODS: We decellularized lung ECM using detergents and prepared polyacrylamide hydrogels of defined stiffness by varying acrylamide concentrations. Mechanistic studies were guided by immunohistochemistry of IPF lung and used cell culture, RNA-binding protein assays, and xenograft models. MEASUREMENTS AND MAIN RESULTS: Contrary to our hypothesis, we excluded fibroblast mechanotransduction of ECM stiffness as the primary mechanism deregulating miR-29. Instead, systematic examination of miR-29 biogenesis revealed a microRNA processing defect that impeded processing of miR-29 into its mature bioactive forms. Immunohistochemical analysis of the microRNA processing machinery in IPF lung specimens revealed decreased Dicer1 expression in the procollagen-rich myofibroblastic core of fibroblastic foci compared with the focus perimeter and adjacent alveolar walls. Mechanistically, IPF-ECM increased association of the Dicer1 transcript with RNA binding protein AUF1 (AU-binding factor 1), and Dicer1 knockdown conferred primary human lung fibroblasts with cell-autonomous fibrogenicity in zebrafish and mouse lung xenograft models. CONCLUSIONS: Our data identify suppression of fibroblast Dicer1 expression in the myofibroblast-rich IPF fibroblastic focus core as a central step in the mechanism by which the ECM sustains fibrosis progression in IPF.


Assuntos
RNA Helicases DEAD-box/genética , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , MicroRNAs/metabolismo , Ribonuclease III/genética , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrose/genética , Fibrose/patologia , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Peixe-Zebra
7.
J Biol Chem ; 292(40): 16420-16439, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28726637

RESUMO

Aberrant proliferation and activation of lung fibroblasts contribute to the initiation and progression of idiopathic pulmonary fibrosis (IPF). However, the mechanisms responsible for the proliferation and activation of fibroblasts are not fully understood. The objective of this study was to investigate the role of miR-101 in the proliferation and activation of lung fibroblasts. miR-101 expression was determined in lung tissues from patients with IPF and mice with bleomycin-induced pulmonary fibrosis. The regulation of miR-101 and cellular signaling was investigated in pulmonary fibroblasts in vitro The role of miR-101 in pulmonary fibrosis in vivo was studied using adenovirus-mediated gene transfer in mice. The expression of miR-101 was down-regulated in fibrotic lungs from patients with IPF and bleomycin-treated mice. The down-regulation of miR-101 occurred via the E26 transformation-specific (ETS) transcription factor. miR-101 suppressed the WNT5a-induced proliferation of lung fibroblasts by inhibiting NFATc2 signaling via targeting Frizzled receptor 4/6 and the TGF-ß-induced activation of lung fibroblasts by inhibition of SMAD2/3 signaling via targeting the TGF-ß receptor 1. Adenovirus-mediated miR-101 gene transfer in the mouse lung attenuated bleomycin-induced lung fibrosis and improved lung function. Our data suggest that miR-101 is an anti-fibrotic microRNA and a potential therapeutic target for pulmonary fibrosis.


Assuntos
Proliferação de Células , Regulação para Baixo , Fibroblastos/metabolismo , MicroRNAs/biossíntese , Fibrose Pulmonar/metabolismo , Animais , Bleomicina/efeitos adversos , Bleomicina/farmacologia , Modelos Animais de Doenças , Feminino , Fibroblastos/patologia , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Humanos , Masculino , Camundongos , MicroRNAs/genética , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/terapia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo
8.
Am J Physiol Lung Cell Mol Physiol ; 314(1): L127-L136, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28860143

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease, but the mechanisms driving progression remain incompletely defined. We previously reported that the IPF lung harbors fibrogenic mesenchymal progenitor cells (MPCs), which serve as a cell of origin for IPF fibroblasts. Proliferating IPF MPCs are located at the periphery of fibroblastic foci in an active cellular front at the interface between the myofibroblast-rich focus core and adjacent normal alveolar structures. Among a large set of genes that distinguish IPF MPCs from their control counterparts, we identified IL-8 as a candidate mediator of IPF MPC fibrogenicity and driver of fibrotic progression. IPF MPCs and their progeny displayed increased steady-state levels of IL-8 and its cognate receptor CXCR1 and secreted more IL-8 than did controls. IL-8 functioned in an autocrine manner promoting IPF MPC self-renewal and the proliferation and motility of IPF MPC progeny. Secreted IL-8 also functioned in a paracrine manner stimulating macrophage migration. Analysis of IPF lung tissue demonstrated codistribution of IPF MPCs with activated macrophages in the active cellular front of the fibroblastic focus. These findings indicate that IPF MPC-derived IL-8 is capable of expanding the mesenchymal cell population and recruiting activated macrophages cells to actively evolving fibrotic lesions.


Assuntos
Movimento Celular , Fibrose Pulmonar Idiopática/patologia , Interleucina-8/metabolismo , Células-Tronco Mesenquimais/patologia , Proliferação de Células , Células Cultivadas , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Interleucina-8/genética , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais
9.
Am J Respir Cell Mol Biol ; 52(4): 418-28, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25140582

RESUMO

Hedgehog signaling plays important roles in cell development and differentiation. In this study, the ability of Sonic Hedgehog (SHH) to induce myofibroblast differentiation was analyzed in isolated human lung fibroblasts, and its in vivo significance was evaluated in rodent bleomycin-induced pulmonary fibrosis. The results showed that SHH could induce myofibroblast differentiation in human lung fibroblasts in a Smo- and Gli1-dependent manner. Gel shift analysis, chromatin immunoprecipitation assay, and site-directed mutagenesis revealed that a Gli1 binding consensus in the α-SMA gene promoter was important for mediating SHH-induced myofibroblast differentiation. Analysis of Hedgehog reemergence in vivo revealed that of all three Hedgehog isoforms, only SHH was significantly induced in bleomycin-injured lung along with Gli1. The induction of SHH was only noted in epithelial cells, and its expression was undetectable in lung fibroblasts or macrophages. transforming growth factor (TGF)-ß induced SHH significantly in cultured alveolar epithelial cells, whereas SHH induced TGF-ß in lung fibroblasts. Pulmonary fibrosis and α-smooth muscle actin (α-SMA) expression were significantly reduced in mice that were Smo deficient only in type I collagen-expressing cells. Thus, the reemergence of SHH in epithelial cells could result in induction of myofibroblast differentiation in a Smo-dependent manner and subsequent Gli1 activation of the α-SMA promoter.


Assuntos
Proteínas Hedgehog/metabolismo , Fibrose Pulmonar/metabolismo , Actinas/biossíntese , Actinas/genética , Animais , Sequência de Bases , Células Cultivadas , Transição Epitelial-Mesenquimal , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miofibroblastos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Fibrose Pulmonar/patologia , Fatores de Transcrição/metabolismo , Proteína GLI1 em Dedos de Zinco
10.
Am J Respir Cell Mol Biol ; 53(3): 391-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25612003

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by the relentless expansion of fibroblasts depositing type I collagen within the alveolar wall and obliterating the alveolar airspace. MicroRNA (miR)-29 is a potent regulator of collagen expression. In IPF, miR-29 levels are low, whereas type I collagen expression is high. However, the mechanism for suppression of miR-29 and increased type I collagen expression in IPF remains unclear. Here we show that when IPF fibroblasts are seeded on polymerized type I collagen, miR-29c levels are suppressed and type I collagen expression is high. In contrast, miR-29c is high and type I collagen expression is low in control fibroblasts. We demonstrate that the mechanism for suppression of miR-29 during IPF fibroblast interaction with polymerized collagen involves inappropriately low protein phosphatase (PP) 2A function, leading to histone deacetylase (HDA) C4 phosphorylation and decreased nuclear translocation of HDAC4. We demonstrate that overexpression of HDAC4 in IPF fibroblasts restored miR-29c levels and decreased type I collagen expression, whereas knocking down HDAC4 in control fibroblasts suppressed miR-29c levels and increased type I collagen expression. Our data indicate that IPF fibroblast interaction with polymerized type I collagen results in an aberrant PP2A/HDAC4 axis, which suppresses miR-29, causing a pathologic increase in type I collagen expression.


Assuntos
Colágeno Tipo I/metabolismo , Fibroblastos/enzimologia , Histona Desacetilases/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , MicroRNAs/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Repressoras/metabolismo , Núcleo Celular/enzimologia , Células Cultivadas , Epigênese Genética , Humanos , Fosforilação , Proteína Fosfatase 2C , Processamento de Proteína Pós-Traducional , Transporte Proteico , Transdução de Sinais
12.
Am J Pathol ; 184(5): 1369-83, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24631025

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive disease of the middle aged and elderly with a prevalence of one million persons worldwide. The fibrosis spreads from affected alveoli into contiguous alveoli, creating a reticular network that leads to death by asphyxiation. Lung fibroblasts from patients with IPF have phenotypic hallmarks, distinguishing them from their normal counterparts: pathologically activated Akt signaling axis, increased collagen and α-smooth muscle actin expression, distinct gene expression profile, and ability to form fibrotic lesions in model organisms. Despite the centrality of these fibroblasts in disease pathogenesis, their origin remains uncertain. Here, we report the identification of cells in the lungs of patients with IPF with the properties of mesenchymal progenitors. In contrast to progenitors isolated from nonfibrotic lungs, IPF mesenchymal progenitor cells produce daughter cells manifesting the full spectrum of IPF hallmarks, including the ability to form fibrotic lesions in zebrafish embryos and mouse lungs, and a transcriptional profile reflecting these properties. Morphological analysis of IPF lung tissue revealed that mesenchymal progenitor cells and cells with the characteristics of their progeny comprised the fibrotic reticulum. These data establish that the lungs of patients with IPF contain pathological mesenchymal progenitor cells that are cells of origin for fibrosis-mediating fibroblasts. These fibrogenic mesenchymal progenitors and their progeny represent an unexplored target for novel therapies to interdict fibrosis.


Assuntos
Fibroblastos/patologia , Fibrose Pulmonar Idiopática/patologia , Animais , Linhagem Celular , Separação Celular , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Xenoenxertos , Humanos , Fibrose Pulmonar Idiopática/genética , Células-Tronco Mesenquimais/patologia , Camundongos , Fenótipo , Transdução de Sinais/genética , Peixe-Zebra
13.
Am J Pathol ; 184(6): 1643-51, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24726499

RESUMO

A hallmark of idiopathic pulmonary fibrosis (IPF) is excessive and disordered deposition of extracellular matrix. Although the lung extracellular matrix normally plays an essential role in development and maintenance of lung tissue through reciprocal interactions with resident cells, the disordered matrix in the diseased lung is increasingly recognized as an active and important contributor to IPF pathogenesis. This working group summary from a recently conducted National Heart, Lung, and Blood Institute strategic planning workshop for IPF research highlights recent advances, challenges, and opportunities in the study of matrix biology in IPF. Particular attention is given to the composition and mechanical properties of the matrix in normal and diseased lungs, and the biochemical and biomechanical influences exerted by pathological matrix. Recently developed model systems are also summarized as key tools for advancing our understanding of matrix biology in IPF. Emerging approaches to therapeutically target the matrix in preclinical and clinical settings are discussed, as are important concepts, such as alterations of the matrix with aging and the potential for the resolution of fibrosis. Specific recommendations for future studies in matrix biology of IPF are also proposed.


Assuntos
Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Educação , Matriz Extracelular/fisiologia , Humanos , Fibrose Pulmonar Idiopática/patologia , National Heart, Lung, and Blood Institute (U.S.) , Estados Unidos
14.
Am J Respir Crit Care Med ; 189(2): 214-22, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24160862

RESUMO

The median survival of patients with idiopathic pulmonary fibrosis (IPF) continues to be approximately 3 years from the time of diagnosis, underscoring the lack of effective medical therapies for this disease. In the United States alone, approximately 40,000 patients die of this disease annually. In November 2012, the NHLBI held a workshop aimed at coordinating research efforts and accelerating the development of IPF therapies. Basic, translational, and clinical researchers gathered with representatives from the NHLBI, patient advocacy groups, pharmaceutical companies, and the U.S. Food and Drug Administration to review the current state of IPF research and identify priority areas, opportunities for collaborations, and directions for future research. The workshop was organized into groups that were tasked with assessing and making recommendations to promote progress in one of the following six critical areas of research: (1) biology of alveolar epithelial injury and aberrant repair; (2) role of extracellular matrix; (3) preclinical modeling; (4) role of inflammation and immunity; (5) genetic, epigenetic, and environmental determinants; (6) translation of discoveries into diagnostics and therapeutics. The workshop recommendations provide a basis for directing future research and strategic planning by scientific, professional, and patient communities and the NHLBI.


Assuntos
Fibrose Pulmonar Idiopática , Animais , Pesquisa Biomédica/tendências , Modelos Animais de Doenças , Matriz Extracelular/patologia , Predisposição Genética para Doença , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/fisiopatologia , Fibrose Pulmonar Idiopática/terapia , Inflamação/imunologia , Camundongos , Alvéolos Pulmonares/patologia , Mucosa Respiratória/patologia
15.
Am J Physiol Lung Cell Mol Physiol ; 307(4): L283-94, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24951777

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by the relentless spread of fibroblasts from scarred alveoli into adjacent alveolar units, resulting in progressive hypoxia and death by asphyxiation. Although hypoxia is a prominent clinical feature of IPF, the role of hypoxia as a driver of the progressive fibrotic nature of the disease has not been explored. Here, we demonstrate that hypoxia robustly stimulates the proliferation of IPF fibroblasts. We found that miR-210 expression markedly increases in IPF fibroblasts in response to hypoxia and that knockdown of miR-210 decreases hypoxia-induced IPF fibroblast proliferation. Silencing hypoxia-inducible factor (HIF)-2α inhibits the hypoxia-mediated increase in miR-210 expression and blocks IPF fibroblast proliferation, indicating that HIF-2α is upstream of miR-210. We demonstrate that the miR-210 downstream target MNT is repressed in hypoxic IPF fibroblasts and that knockdown of miR-210 increases MNT expression. Overexpression of MNT inhibits hypoxia-induced IPF fibroblast proliferation. Together, these data indicate that hypoxia potently stimulates miR-210 expression via HIF-2α, and high miR-210 expression drives fibroblast proliferation by repressing the c-myc inhibitor, MNT. In situ analysis of IPF lung tissue demonstrates miR-210 expression in a similar distribution with HIF-2α and the hypoxic marker carbonic anhydrase-IX in cells within the IPF fibrotic reticulum. Our results raise the possibility that a pathological feed-forward loop exists in the IPF lung, in which hypoxia promotes IPF fibroblast proliferation via stimulation of miR-210 expression, which in turn worsens hypoxia.


Assuntos
Fibroblastos/fisiologia , Hipóxia/fisiopatologia , Fibrose Pulmonar Idiopática/fisiopatologia , MicroRNAs/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Linhagem Celular , Proliferação de Células , Progressão da Doença , Fibroblastos/efeitos dos fármacos , Humanos , Pulmão/patologia , MicroRNAs/biossíntese , Proteínas Repressoras/biossíntese
16.
Am J Pathol ; 182(1): 71-83, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23260200

RESUMO

Poly(ADP-ribosyl)ation (PARylation) is a post-translational protein modification effected by enzymes belonging to the poly(ADP-ribose) polymerase (PARP) superfamily, mainly by PARP-1. The key acceptors of poly(ADP-ribose) include PARP-1 itself, histones, DNA repair proteins, and transcription factors. Because many of these factors are involved in the regulation of myofibroblast differentiation, we examined the role of PARylation on myofibroblast differentiation. Overexpression of PARP-1 with an expression plasmid activated expression of the α-SMA gene (Acta2), a marker of myofibroblast differentiation in lung fibroblasts. Suppression of PARP-1 activity or gene expression with PARP-1 inhibitors or siRNA, respectively, had the opposite effect on these cells. PARP-1-deficient cells also had reduced α-SMA gene expression. DNA pyrosequencing identified hypermethylated regions of the α-SMA gene in PARP-1-deficient cells, relative to wild-type cells. Interestingly, and of potential relevance to human idiopathic pulmonary fibrosis, PARP activity in lung fibroblasts isolated from idiopathic pulmonary fibrosis patients was significantly higher than that in cells isolated from control subjects. Furthermore, PARP-1-deficient mice exhibited reduced pulmonary fibrosis in response to bleomycin-induced lung injury, relative to wild-type controls. These results suggest that PARylation is important for myofibroblast differentiation and the pathogenesis of pulmonary fibrosis.


Assuntos
Miofibroblastos/citologia , Poli(ADP-Ribose) Polimerases/fisiologia , Actinas/genética , Actinas/metabolismo , Animais , Bleomicina , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Ilhas de CpG/genética , Metilação de DNA , Feminino , Regulação da Expressão Gênica/fisiologia , Inativação Gênica , Pulmão/citologia , Pulmão/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miofibroblastos/enzimologia , Miofibroblastos/patologia , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/deficiência , Poli(ADP-Ribose) Polimerases/genética , Processamento de Proteína Pós-Traducional/fisiologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Ratos , Ratos Endogâmicos F344 , Proteína Smad3/metabolismo
17.
Am J Respir Cell Mol Biol ; 49(2): 260-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23526226

RESUMO

In addition to its expression in stem cells and many cancers, telomerase activity is transiently induced in murine bleomycin (BLM)-induced pulmonary fibrosis with increased levels of telomerase transcriptase (TERT) expression, which is essential for fibrosis. To extend these observations to human chronic fibrotic lung disease, we investigated the expression of telomerase activity in lung fibroblasts from patients with interstitial lung diseases (ILDs), including idiopathic pulmonary fibrosis (IPF). The results showed that telomerase activity was induced in more than 66% of IPF lung fibroblast samples, in comparison with less than 29% from control samples, some of which were obtained from lung cancer resections. Less than 4% of the human IPF lung fibroblast samples exhibited shortened telomeres, whereas less than 6% of peripheral blood leukocyte samples from patients with IPF or hypersensitivity pneumonitis demonstrated shortened telomeres. Moreover, shortened telomeres in late-generation telomerase RNA component knockout mice did not exert a significant effect on BLM-induced pulmonary fibrosis. In contrast, TERT knockout mice exhibited deficient fibrosis that was independent of telomere length. Finally, TERT expression was up-regulated by a histone deacetylase inhibitor, while the induction of TERT in lung fibroblasts was associated with the binding of acetylated histone H3K9 to the TERT promoter region. These findings indicate that significant telomerase induction was evident in fibroblasts from fibrotic murine lungs and a majority of IPF lung samples, whereas telomere shortening was not a common finding in the human blood and lung fibroblast samples. Notably, the animal studies indicated that the pathogenesis of pulmonary fibrosis was independent of telomere length.


Assuntos
Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Telomerase/biossíntese , Telômero/metabolismo , Acetilação/efeitos dos fármacos , Alveolite Alérgica Extrínseca/induzido quimicamente , Alveolite Alérgica Extrínseca/genética , Alveolite Alérgica Extrínseca/metabolismo , Alveolite Alérgica Extrínseca/patologia , Animais , Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/farmacologia , Bleomicina/efeitos adversos , Bleomicina/farmacologia , Células Cultivadas , Doença Crônica , Feminino , Fibroblastos/patologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Histonas/genética , Histonas/metabolismo , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Telomerase/genética , Telômero/genética , Telômero/patologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
18.
JCI Insight ; 8(4)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36656644

RESUMO

Hypoxia is a sentinel feature of idiopathic pulmonary fibrosis (IPF). The IPF microenvironment contains high lactate levels, and hypoxia enhances cellular lactate production. Lactate, acting through the GPR81 lactate receptor, serves as a signal molecule regulating cellular processes. We previously identified intrinsically fibrogenic mesenchymal progenitor cells (MPCs) that drive fibrosis in the lungs of patients with IPF. However, whether hypoxia enhances IPF MPC fibrogenicity is unclear. We hypothesized that hypoxia increases IPF MPC fibrogenicity via lactate and its cognate receptor GPR81. Here we show that hypoxia promotes IPF MPC self-renewal. The mechanism involves hypoxia-mediated enhancement of LDHA function and lactate production and release. Hypoxia also increases HIF1α levels, and this increase in turn augments the expression of GPR81. Exogenous lactate operating through GPR81 promotes IPF MPC self-renewal. IHC analysis of IPF lung tissue demonstrates IPF MPCs expressing GPR81 and hypoxic markers on the periphery of the fibroblastic focus. We show that hypoxia enhances IPF MPC fibrogenicity in vivo. We demonstrate that knockdown of GPR81 inhibits hypoxia-induced IPF MPC self-renewal in vitro and attenuates hypoxia-induced IPF MPC fibrogenicity in vivo. Our data demonstrate that hypoxia creates a feed-forward loop that augments IPF MPC fibrogenicity via the lactate/GPR81/HIF1α pathway.


Assuntos
Fibrose Pulmonar Idiopática , Células-Tronco Mesenquimais , Humanos , Ácido Láctico/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Transdução de Sinais , Células-Tronco Mesenquimais/metabolismo , Hipóxia/metabolismo
19.
Front Oncol ; 12: 862250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707369

RESUMO

Mesenchymal stem cells (MSCs) contribute to tumor pathogenesis and elicit antitumor immune responses in tumor microenvironments. Nuclear proteins might be the main players in these processes. In the current study, combining spatial proteomics with ingenuity pathway analysis (IPA) in lung non-small cell (NSC) cancer MSCs, we identify a key nuclear protein regulator, SFPQ (Splicing Factor Proline and Glutamine Rich), which is overexpressed in lung cancer MSCs and functions to promote MSCs proliferation, chemical resistance, and invasion. Mechanistically, the knockdown of SFPQ reduces CD44v6 expression to inhibit lung cancer MSCs stemness, proliferation in vitro, and metastasis in vivo. The data indicates that SFPQ may be a potential therapeutic target for limiting growth, chemotherapy resistance, and metastasis of lung cancer.

20.
Am J Pathol ; 176(6): 2626-37, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20395445

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive fibroproliferative disorder refractory to current pharmacological therapies. Fibroblasts isolated from IPF patients display pathological activation of PI3K/Akt caused by low PTEN phosphatase activity. This enables these cells to escape the negative proliferative properties of polymerized collagen. The mechanism underlying low PTEN activity in IPF fibroblasts is unclear, but our prior studies indicate that membrane-associated PTEN expression is decreased in these cells. Caveolin-1 is an integral membrane protein whose expression is decreased in IPF lung tissue, but how low caveolin-1 contributes to pathological fibrosis is incompletely understood. The objective of this study was to examine the hypothesis that caveolin-1 regulates PTEN function in IPF fibroblasts. Here we demonstrate that caveolin-1 expression is a determinant of membrane PTEN levels and show that PTEN interacts with caveolin-1 via its caveolin-1-binding sequence. We demonstrate that caveolin-1 expression is low in IPF fibroblasts and that this correlates with low membrane PTEN levels, whereas overexpression of caveolin-1 restores membrane PTEN levels, inhibits Akt phosphorylation, and suppresses proliferation. We demonstrate that caveolin-1 and PTEN expression are low in myofibroblasts within IPF fibroblastic foci. These data indicate that IPF fibroblasts display low caveolin-1 expression, which results in low membrane-associated PTEN expression. This creates a membrane microenvironment depleted of inhibitory phosphatase activity, facilitating the aberrant activation PI3K/Akt and pathological proliferation.


Assuntos
Caveolina 1/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Animais , Apoptose/fisiologia , Caveolina 1/genética , Linhagem Celular , Membrana Celular/metabolismo , Colágeno/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa