Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
BMC Plant Biol ; 24(1): 183, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475749

RESUMO

BACKGROUND: Fusarium head blight (FHB) infection results in Fusarium damaged kernels (FDK) and deoxynivalenol (DON) contamination that are downgrading factors at the Canadian elevators. Durum wheat (Triticum turgidum L. var. durum Desf.) is particularly susceptible to FHB and most of the adapted Canadian durum wheat cultivars are susceptible to moderately susceptible to this disease. However, the durum line DT696 is less susceptible to FHB than commercially grown cultivars. Little is known about genetic variation for durum wheat ability to resist FDK infection and DON accumulation. This study was undertaken to map genetic loci conferring resistance to DON and FDK resistance using a SNP high-density genetic map of a DT707/DT696 DH population and to identify SNP markers useful in marker-assisted breeding. One hundred twenty lines were grown in corn spawn inoculated nurseries near Morden, MB in 2015, 2016 and 2017 and the harvested seeds were evaluated for DON. The genetic map of the population was used in quantitative trait locus analysis performed with MapQTL.6® software. RESULTS: Four DON accumulation resistance QTL detected in two of the three years were identified on chromosomes 1 A, 5 A (2 loci) and 7 A and two FDK resistance QTL were identified on chromosomes 5 and 7 A in single environments. Although not declared significant due to marginal LOD values, the QTL for FDK on the 5 and 7 A were showing in other years suggesting their effects were real. DT696 contributed the favourable alleles for low DON and FDK on all the chromosomes. Although no resistance loci contributed by DT707, transgressive segregant lines were identified resulting in greater resistance than DT696. Breeder-friendly KASP markers were developed for two of the DON and FDK QTL detected on chromosomes 5 and 7 A. Markers flanking each QTL were physically mapped against the durum wheat reference sequence and candidate genes which might be involved in FDK and DON resistance were identified within the QTL intervals. CONCLUSIONS: The DH lines harboring the desired resistance QTL will serve as useful resources in breeding for FDK and DON resistance in durum wheat. Furthermore, breeder-friendly KASP markers developed during this study will be useful for the selection of durum wheat varieties with low FDK and DON levels in durum wheat breeding programs.


Assuntos
Fusarium , Tricotecenos , Triticum , Triticum/genética , Melhoramento Vegetal , Canadá , Doenças das Plantas/genética , Resistência à Doença/genética
2.
Theor Appl Genet ; 135(8): 2747-2767, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35737008

RESUMO

KEY MESSAGE: This study performed comprehensive analyses on the predictive abilities of single-trait and two multi-trait models in three populations. Our results demonstrated the superiority of multi-traits over single-trait models across seven agronomic and four to seven disease resistance traits of different genetic architecture. The predictive ability of multi-trait and single-trait prediction models has not been investigated on diverse traits evaluated under organic and conventional management systems. Here, we compared the predictive abilities of 25% of a testing set that has not been evaluated for a single trait (ST), not evaluated for multi-traits (MT1), and evaluated for some traits but not others (MT2) in three spring wheat populations genotyped either with the wheat 90K single nucleotide polymorphisms array or DArTseq. Analyses were performed on seven agronomic traits evaluated under conventional and organic management systems, four to seven disease resistance traits, and all agronomic and disease resistance traits simultaneously. The average prediction accuracies of the ST, MT1, and MT2 models varied from 0.03 to 0.78 (mean 0.41), from 0.05 to 0.82 (mean 0.47), and from 0.05 to 0.92 (mean 0.67), respectively. The predictive ability of the MT2 model was significantly greater than the ST model in all traits and populations except common bunt with the MT1 model being intermediate between them. The MT2 model increased prediction accuracies over the ST and MT1 models in all traits by 9.0-82.4% (mean 37.3%) and 2.9-82.5% (mean 25.7%), respectively, except common bunt that showed up to 7.7% smaller accuracies in two populations. A joint analysis of all agronomic and disease resistance traits further improved accuracies within the MT1 and MT2 models on average by 21.4% and 17.4%, respectively, as compared to either the agronomic or disease resistance traits, demonstrating the high potential of the multi-traits models in improving prediction accuracies.


Assuntos
Resistência à Doença , Triticum , Resistência à Doença/genética , Genoma , Genômica/métodos , Genótipo , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Triticum/genética
3.
Theor Appl Genet ; 133(10): 2775-2796, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32556394

RESUMO

KEY MESSAGE: QTL analyses of two bi-parental mapping populations with AC Barrie as a parent revealed numerous FHB-resistance QTL unique to each population and uncovered novel variation near Fhb1. Fusarium head blight (FHB) is a destructive disease of wheat worldwide, leading to severe yield and quality losses. The genetic basis of native FHB resistance was examined in two populations: a recombinant inbred line population from the cross Cutler/AC Barrie and a doubled haploid (DH) population from the cross AC Barrie/Reeder. Numerous QTL were detected among the two mapping populations with many being cross-specific. Photoperiod insensitivity at Ppd-D1 and dwarfing at Rht-B1 and Rht-D1 was associated with increased FHB susceptibility. Anthesis date QTL at or near the Vrn-A1 and Vrn-B1 loci co-located with major FHB-resistance QTL in the AC Barrie/Reeder population. The loci were epistatic for both traits, such that DH lines with both late alleles were considerably later to anthesis and had reduced FHB symptoms (i.e., responsible for the epistatic interaction). Interestingly, AC Barrie contributed FHB resistance near the Fhb1 locus in the Cutler population and susceptibility in the Reeder population. Analyses of the Fhb1 candidate genes PFT and TaHRC confirmed that AC Barrie, Cutler, and Reeder do not carry the Sumai-3 Fhb1 gene. Resistance QTL were also detected at the expected locations of Fhb2 and Fhb5. The native FHB-resistance QTL detected near Fhb1, Fhb2, and Fhb5 do not appear to be as effective as Fhb1, Fhb2, and Fhb5 from Sumai-3. The presence of awns segregated at the B1 awn inhibitor locus in both populations, but was only associated with FHB resistance in the Cutler/AC Barrie population suggesting linkage caused the association rather than pleiotropy.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Alelos , Mapeamento Cromossômico , Fusarium/patogenicidade , Genes de Plantas , Genótipo , Fenótipo , Doenças das Plantas/microbiologia , Triticum/microbiologia
4.
BMC Plant Biol ; 19(1): 179, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053089

RESUMO

BACKGROUND: Fusarium head blight resistance genes, Fhb1 (for Type-II resistance), Fhb2 (Type-II), and Fhb5 (Type-I plus some Type-II), which originate from Sumai 3, are among the most important that confer resistance in hexaploid wheat. Near-isogenic lines (NILs), in the CDC Alsask (susceptible; n = 32) and CDC Go (moderately susceptible; n = 38) backgrounds, carrying these genes in all possible combinations were developed using flanking microsatellite markers and evaluated for their response to FHB and deoxynivalenol (DON) accumulation in eight environments. NILs were haplotyped with wheat 90 K iSelect assay to elucidate the genomic composition and confirm alleles' presence. Other than evaluating the effects of three major genes in common genetic background, the study elucidated the epistatic gene interactions as they influence FHB measurements; identified loci other than Fhb1, Fhb2, and Fhb5, in both recurrent and donor parents and examined annotated proteins in gene intervals. RESULTS: Genotyping using 81,857 single nucleotide polymorphism (SNP) markers revealed polymorphism on all chromosomes and that the NILs carried < 3% of alleles from the resistant donor. Significant improvement in field resistance (Type-I + Type-II) resulted only among the CDC Alsask NILs, not the CDC Go NILs. The phenotypic response of NILs carrying combinations of Sumai 3 derived genes suggested non-additive responses and Fhb5 was as good as Fhb1 in conferring field resistance in both populations. In addition to Fhb1, Fhb2, and Fhb5, four to five resistance improving alleles in both populations were identified and three of five in CDC Go were contributed by the susceptible parent. The introgressed chromosome regions carried genes encoding disease resistance proteins, protein kinases, nucleotide-binding and leucine rich repeats' domains. Complex epistatic gene-gene interactions among marker loci (including Fhb1, Fhb2, Fhb5) explained > 20% of the phenotypic variation in FHB measurements. CONCLUSIONS: Immediate Sumai 3 derivatives carry a number of resistance improving minor effect alleles, other than Fhb1, Fhb2, Fhb5. Results verified that marker-assisted selection is possible for the introgression of exotic FHB resistance genes, however, the genetic background of the recipient line and epistatic interactions can have a strong influence on expression and penetrance of any given gene.


Assuntos
Fusarium/fisiologia , Triticum/genética , Triticum/microbiologia , Alelos , Cromossomos de Plantas , Resistência à Doença/genética , Epistasia Genética , Genes de Plantas , Marcadores Genéticos , Genótipo , Padrões de Herança , Fenótipo , Mapeamento Físico do Cromossomo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
5.
Methods Mol Biol ; 2659: 103-118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37249889

RESUMO

Over the past two decades, there have been significant advancements in the realm of transcriptomics, or the study of genes and their expression. Modern RNA sequencing technologies and high-performance computing are creating a "big data" revolution that provides new opportunities to explore the interactions between cereals and pathogens that affect grain yield and food safety. These data are being used to annotate genes and gene variants, as well as identify differentially expressed genes and create global gene co-expression networks. Moreover, these data can unravel the complex interactions between pathogen and host and identify genes and pathways involved in these interactions. This information can then be used for disease mitigation and the development of crops with superior resistance.


Assuntos
Grão Comestível , Fusarium , RNA-Seq , Grão Comestível/genética , Fusarium/genética , Doenças das Plantas/genética , Triticum/genética , Interações Hospedeiro-Patógeno/genética
6.
Front Plant Sci ; 14: 1190358, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680355

RESUMO

Fusarium head blight (FHB) is one the most globally destructive fungal diseases in wheat and other small grains, causing a reduction in grain yield by 10-70%. The present study was conducted in a panel of historical and modern Canadian spring wheat (Triticum aestivum L.) varieties and lines to identify new sources of FHB resistance and map associated quantitative trait loci (QTLs). We evaluated 249 varieties and lines for reaction to disease incidence, severity, and visual rating index (VRI) in seven environments by artificially spraying a mixture of four Fusarium graminearum isolates. A subset of 198 them were genotyped with the Wheat 90K iSelect single nucleotide polymorphisms (SNPs) array. Genome-wide association mapping performed on the overall best linear unbiased estimators (BLUE) computed from all seven environments and the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v2.0 physical map of 26,449 polymorphic SNPs out of the 90K identified sixteen FHB resistance QTLs that individually accounted for 5.7-10.2% of the phenotypic variance. The positions of two of the FHB resistance QTLs overlapped with plant height and flowering time QTLs. Four of the QTLs (QFhb.dms-3B.1, QFhb.dms-5A.5, QFhb.dms-5A.7, and QFhb.dms-6A.4) were simultaneously associated with disease incidence, severity, and VRI, which accounted for 27.0-33.2% of the total phenotypic variance in the combined environments. Three of the QTLs (QFhb.dms-2A.2, QFhb.dms-2D.2, and QFhb.dms-5B.8) were associated with both incidence and VRI and accounted for 20.5-22.1% of the total phenotypic variance. In comparison with the VRI of the checks, we identified four highly resistant and thirty-three moderately resistant lines and varieties. The new FHB sources of resistance and the physical map of the associated QTLs would provide wheat breeders valuable information towards their efforts in developing improved varieties in western Canada.

7.
Front Plant Sci ; 14: 1166282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457352

RESUMO

Fusarium head blight (FHB) is a highly destructive fungal disease of wheat to which host resistance is quantitatively inherited and largely influenced by the environment. Resistance to FHB has been associated with taller height and later maturity; however, a further understanding of these relationships is needed. An association mapping panel (AMP) of 192 predominantly Canadian spring wheat was genotyped with the wheat 90K single-nucleotide polymorphism (SNP) array. The AMP was assessed for FHB incidence (INC), severity (SEV) and index (IND), days to anthesis (DTA), and plant height (PLHT) between 2015 and 2017 at three Canadian FHB-inoculated nurseries. Seven multi-environment trial (MET) datasets were deployed in a genome-wide association study (GWAS) using a single-locus mixed linear model (MLM) and a multi-locus random SNP-effect mixed linear model (mrMLM). MLM detected four quantitative trait nucleotides (QTNs) for INC on chromosomes 2D and 3D and for SEV and IND on chromosome 3B. Further, mrMLM identified 291 QTNs: 50 (INC), 72 (SEV), 90 (IND), 41 (DTA), and 38 (PLHT). At two or more environments, 17 QTNs for FHB, DTA, and PLHT were detected. Of these 17, 12 QTNs were pleiotropic for FHB traits, DTA, and PLHT on chromosomes 1A, 1D, 2D, 3B, 5A, 6B, 7A, and 7B; two QTNs for DTA were detected on chromosomes 1B and 7A; and three PLHT QTNs were located on chromosomes 4B and 6B. The 1B DTA QTN and the three pleiotropic QTNs on chromosomes 1A, 3B, and 6B are potentially identical to corresponding quantitative trait loci (QTLs) in durum wheat. Further, the 3B pleiotropic QTN for FHB INC, SEV, and IND co-locates with TraesCS3B02G024900 within the Fhb1 region on chromosome 3B and is ~3 Mb from a cloned Fhb1 candidate gene TaHRC. While the PLHT QTN on chromosome 6B is putatively novel, the 1B DTA QTN co-locates with a disease resistance protein located ~10 Mb from a Flowering Locus T1-like gene TaFT3-B1, and the 7A DTA QTN is ~5 Mb away from a maturity QTL QMat.dms-7A.3 of another study. GWAS and QTN candidate genes enabled the characterization of FHB resistance in relation to DTA and PLHT. This approach should eventually generate additional and reliable trait-specific markers for breeding selection, in addition to providing useful information for FHB trait discovery.

8.
Front Plant Sci ; 14: 1134132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284725

RESUMO

Fusarium head blight (FHB) has rapidly become a major challenge to successful wheat production and competitive end-use quality in western Canada. Continuous effort is required to develop germplasm with improved FHB resistance and understand how to incorporate the material into crossing schemes for marker-assisted selection and genomic selection. The aim of this study was to map quantitative trait loci (QTL) responsible for the expression of FHB resistance in two adapted cultivars and to evaluate their co-localization with plant height, days to maturity, days to heading, and awnedness. A large doubled haploid population of 775 lines developed from cultivars Carberry and AC Cadillac was assessed for FHB incidence and severity in nurseries near Portage la Prairie, Brandon, and Morden in different years, and for plant height, awnedness, days to heading, and days to maturity near Swift Current. An initial linkage map using a subset of 261 lines was constructed using 634 polymorphic DArT and SSR markers. QTL analysis revealed five resistance QTL on chromosomes 2A, 3B (two loci), 4B, and 5A. A second genetic map with increased marker density was constructed using the Infinium iSelect 90k SNP wheat array in addition to the previous DArT and SSR markers, which revealed two additional QTL on 6A and 6D. The complete population was genotyped, and a total of 6,806 Infinium iSelect 90k SNP polymorphic markers were used to identify 17 putative resistance QTL on 14 different chromosomes. As with the smaller population size and fewer markers, large-effect QTL were detected on 3B, 4B, and 5A that were consistently expressed across environments. FHB resistance QTL were co-localized with plant height QTL on chromosomes 4B, 6D, and 7D; days to heading on 2B, 3A, 4A, 4B, and 5A; and maturity on 3A, 4B, and 7D. A major QTL for awnedness was identified as being associated with FHB resistance on chromosome 5A. Nine small-effect QTL were not associated with any of the agronomic traits, whereas 13 QTL that were associated with agronomic traits did not co-localize with any of the FHB traits. There is an opportunity to select for improved FHB resistance within adapted cultivars by using markers associated with complementary QTL.

9.
Front Plant Sci ; 14: 1182548, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900749

RESUMO

Durum wheat is more susceptible to Fusarium head blight (FHB) than other types or classes of wheat. The disease is one of the most devastating in wheat; it reduces yield and end-use quality and contaminates the grain with fungal mycotoxins such as deoxynivalenol (DON). A panel of 265 Canadian and European durum wheat cultivars, as well as breeding and experimental lines, were tested in artificially inoculated field environments (2019-2022, inclusive) and two greenhouse trials (2019 and 2020). The trials were assessed for FHB severity and incidence, visual rating index, Fusarium-damaged kernels, DON accumulation, anthesis or heading date, maturity date, and plant height. In addition, yellow pigment and protein content were analyzed for the 2020 field season. To capture loci underlying FHB resistance and related traits, GWAS was performed using single-locus and several multi-locus models, employing 13,504 SNPs. Thirty-one QTL significantly associated with one or more FHB-related traits were identified, of which nine were consistent across environments and associated with multiple FHB-related traits. Although many of the QTL were identified in regions previously reported to affect FHB, the QTL QFhb-3B.2, associated with FHB severity, incidence, and DON accumulation, appears to be novel. We developed KASP markers for six FHB-associated QTL that were consistently detected across multiple environments and validated them on the Global Durum Panel (GDP). Analysis of allelic diversity and the frequencies of these revealed that the lines in the GDP harbor between zero and six resistance alleles. This study provides a comprehensive assessment of the genetic basis of FHB resistance and DON accumulation in durum wheat. Accessions with multiple favorable alleles were identified and will be useful genetic resources to improve FHB resistance in durum breeding programs through marker-assisted recurrent selection and gene stacking.

11.
Front Genet ; 14: 1125940, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007938

RESUMO

In the present era of climate instability, Canadian wheat production has been frequently affected by abiotic stresses and by dynamic populations of pathogens and pests that are more virulent and aggressive over time. Genetic diversity is fundamental to guarantee sustainable and improved wheat production. In the past, the genetics of Brazilian cultivars, such as Frontana, have been studied by Canadian researchers and consequently, Brazilian germplasm has been used to breed Canadian wheat cultivars. The objective of this study was to characterize a collection of Brazilian germplasm under Canadian growing conditions, including the reaction of the Brazilian germplasm to Canadian isolates/pathogens and to predict the presence of certain genes in an effort to increase genetic diversity, improve genetic gain and resilience of Canadian wheat. Over 100 Brazilian hard red spring wheat cultivars released from 1986 to 2016 were evaluated for their agronomic performance in eastern Canada. Some cultivars showed good adaptability, with several cultivars being superior or statistically equal to the highest yielding Canadian checks. Several Brazilian cultivars had excellent resistance to leaf rust, even though only a few of these tested positive for the presence of either Lr34 or Lr16, two of the most common resistance genes in Canadian wheat. Resistance for stem rust, stripe rust and powdery mildew was variable among the Brazilian cultivars. However, many Brazilian cultivars had high levels of resistance to Canadian and African - Ug99 strains of stem rust. Many Brazilian cultivars had good Fusarium head blight (FHB) resistance, which appears to be derived from Frontana. In contrast FHB resistance in Canadian wheat is largely based on the Chinese variety, Sumai-3. The Brazilian germplasm is a valuable source of semi-dwarf (Rht) genes, and 75% of the Brazilian collection possessed Rht-B1b. Many cultivars in the Brazilian collection were found to be genetically distinct from Canadian wheat, making them a valuable resource to increase the disease resistance and genetic variability in Canada and elsewhere.

12.
Genes (Basel) ; 13(4)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35456370

RESUMO

Some studies have investigated the potential of genomic selection (GS) on stripe rust, leaf rust, Fusarium head blight (FHB), and leaf spot in wheat, but none of them have assessed the effect of the reaction norm model that incorporated GE interactions. In addition, the prediction accuracy on common bunt has not previously been studied. Here, we investigated within-population prediction accuracies using the baseline M1 model and two reaction norm models (M2 and M3) with three random cross-validation (CV1, CV2, and CV0) schemes. Three Canadian spring wheat populations were evaluated in up to eight field environments and genotyped with 3158, 5732, and 23,795 polymorphic markers. The M3 model that incorporated GE interactions reduced residual variance by an average of 10.2% as compared with the main effect M2 model and increased prediction accuracies on average by 2-6%. In some traits, the M3 model increased prediction accuracies up to 54% as compared with the M2 model. The average prediction accuracies of the M3 model with CV1, CV2, and CV0 schemes varied from 0.02 to 0.48, from 0.25 to 0.84, and from 0.14 to 0.87, respectively. In both CV2 and CV0 schemes, stripe rust in all three populations, common bunt and leaf rust in two populations, as well as FHB severity, FHB index, and leaf spot in one population had high to very high (0.54-0.87) prediction accuracies. This is the first comprehensive genomic selection study on five major diseases in spring wheat.


Assuntos
Basidiomycota , Fusarium , Basidiomycota/genética , Canadá , Resistência à Doença/genética , Fusarium/genética , Doenças das Plantas/genética , Triticum/genética
13.
Front Fungal Biol ; 3: 1062444, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37746237

RESUMO

Introduction: Wheat is a staple food that is important to global food security, but in epidemic years, fungal pathogens can threaten production, quality, and safety of wheat grain. Globally, one of the most important fungal diseases of wheat is Fusarium head blight (FHB). This disease can be caused by several different Fusarium species with known differences in aggressiveness and mycotoxin-production potential, with the trichothecene toxin deoxynivalenol (DON) and its derivatives being of particular concern. In North America, the most predominant species causing FHB is F. graminearum, which has two distinct sub-populations that are commonly classified into two main chemotypes/genotypes based on their propensity to form trichothecene derivatives, namely 15-acetyldeoxynivalenol (15-ADON) and 3-acetyldeoxynivalenol (3-ADON). Materials and methods: We used a panel of 13 DNA markers to perform species and ADON genotype identification for 55, 444 wheat kernels from 7, 783 samples originating from across Canada from 2014 to 2020. Results and discussion: Based on single-seed analyses, we demonstrate the relationships between Fusarium species and trichothecene chemotype with sample year, sample location, wheat species (hexaploid and durum wheat), severity of Fusarium damaged kernels (FDK), and accumulation of DON. Results indicate that various Fusarium species are present across wheat growing regions in Canada; however, F. graminearum is the most common species and 3-ADON the most common genotype. We observed an increase in the occurrence of the 3-ADON genotype, particularly in the western Prairie regions. Our data provides important information on special-temporal trends in Fusarium species and chemotypes that can aid with the implementation of integrated disease management strategies to control the detrimental effects of this devastating disease.

14.
J Integr Plant Biol ; 52(5): 453-67, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20537041

RESUMO

Using a subtractive hybridization (SH)/cDNA-AFLP combinational approach, differentially expressed genes involved in the potato-Phytophthora infestans interaction were identified. These included genes potentially controlling pathogenesis or avr genes in P. infestans as well as those potentially involved in potato resistance or susceptibility to this pathogen. Forty-one differentially expressed transcript-derived fragments (TDFs), resulting from the interaction, were cloned and sequenced. Two TDFs, suggested as potential pathogenicity factors, have sequence similarity to N-succinyl diaminopimelate aminotransferase and a transcriptional regulator, TetR family gene, respectively. Two other TDFs, suggested as potential avr genes, have sequence similarity to an EST sequence from Avr4/Cf-4/Avr9/Cf-9 and a P. infestans avirulence-associated gene, respectively. Genes' expression and origin were confirmed using Southern blots, Northern blots and qRT-PCR. I.e., potential resistance gene DL81 was induced at 12 hpi in the moderately resistant cultivar, whereas it was down-regulated as early as 6 hpi in the susceptible cultivar. On the other hand, DL21 was induced at 6 hpi (3.38-fold) in response to the highly aggressive isolate (US8) and strongly up-regulated thereafter (25.13-fold at 120 hpi.), whereas it was only slightly up-regulated in response to the weakly aggressive isolate US11 (3.82-fold at 96 hpi), suggesting its potential involvement as a susceptibility gene.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Hibridização de Ácido Nucleico/métodos , Phytophthora infestans/fisiologia , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Sequência de Bases , Clonagem Molecular , Primers do DNA/metabolismo , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Imunidade Inata/genética , Dados de Sequência Molecular , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Solanum tuberosum/imunologia
15.
Front Plant Sci ; 11: 592064, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424887

RESUMO

Durum wheat is an economically important crop for Canadian farmers. Fusarium head blight (FHB) is one of the most destructive diseases that threatens durum production in Canada. FHB reduces yield and end-use quality and most commonly contaminates the grain with the fungal mycotoxin deoxynivalenol, also known as DON. Serious outbreaks of FHB can occur in durum wheat in Canada, and combining genetic resistance with fungicide application is a cost effective approach to control this disease. However, there is limited variation for genetic resistance to FHB in elite Canadian durum cultivars. To explore and identify useful genetic FHB resistance variation for the improvement of Canadian durum wheat, we assembled an association mapping (AM) panel of diverse durum germplasms and performed genome wide association analysis (GWAS). Thirty-one quantitative trait loci (QTL) across all 14 chromosomes were significantly associated with FHB resistance. On 3BS, a stable QTL with a larger effect for resistance was located close to the centromere of 3BS. Three haplotypes of Fhb1 QTL were identified, with an emmer wheat haplotype contributing to disease susceptibility. The large number of QTL identified here can provide a rich resource to improve FHB resistance in commercially grown durum wheat. Among the 31 QTL most were associated with plant height and/or flower time. QTL 1A.1, 1A.2, 3B.2, 5A.1, 6A.1, 7A.3 were associated with FHB resistance and not associated or only weakly associated with flowering time nor plant height. These QTL have features that would make them good targets for FHB resistance breeding.

16.
Sci Rep ; 10(1): 7567, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32372012

RESUMO

The durum wheat line DT696 is a source of moderate Fusarium head blight (FHB) resistance. Previous analysis using a bi-parental population identified two FHB resistance quantitative trait loci (QTL) on chromosome 5A: 5A1 was co-located with a plant height QTL, and 5A2 with a major maturity QTL. A Genome-Wide Association Study (GWAS) of DT696 derivative lines from 72 crosses based on multi-environment FHB resistance, plant height, and maturity phenotypic data was conducted to improve the mapping resolution and further elucidate the genetic relationship of height and maturity with FHB resistance. The Global Tetraploid Wheat Collection (GTWC) was exploited to identify durum wheat lines with DT696 allele and additional recombination events. The 5A2 QTL was confirmed in the derivatives, suggesting the expression stability of the 5A2 QTL in various genetic backgrounds. The GWAS led to an improved mapping resolution rendering the 5A2 interval 10 Mbp shorter than the bi-parental QTL mapping interval. Haplotype analysis using SNPs within the 5A2 QTL applied to the GTWC identified novel haplotypes and recombination breakpoints, which could be exploited for further improvement of the mapping resolution. This study suggested that GWAS of derivative breeding lines is a credible strategy for improving mapping resolution.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Locos de Características Quantitativas , Recombinação Genética , Triticum/genética , Fusarium , Estudos de Associação Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno/genética , Desequilíbrio de Ligação , Doenças das Plantas/microbiologia , Característica Quantitativa Herdável , Seleção Genética , Triticum/microbiologia
17.
PLoS One ; 13(10): e0204362, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30307951

RESUMO

Breeding for Fusarium head blight (FHB) resistance in durum wheat is complicated by the quantitative trait expression and narrow genetic diversity of available resources. High-density mapping of the FHB resistance quantitative trait loci (QTL), evaluation of their co-localization with plant height and maturity QTL and the interaction among the identified QTL are the objectives of this study. Two doubled haploid (DH) populations, one developed from crosses between Triticum turgidum ssp. durum lines DT707 and DT696 and the other between T. turgidum ssp. durum cv. Strongfield and T. turgidum ssp. carthlicum cv. Blackbird were genotyped using the 90K Infinium iSelect chip and evaluated phenotypically at multiple field FHB nurseries over years. A moderate broad-sense heritability indicated a genotype-by-environment interaction for the expression of FHB resistance in both populations. Resistance QTL were identified for the DT707 × DT696 population on chromosomes 1B, 2B, 5A (two loci) and 7A and for the Strongfield × Blackbird population on chromosomes 1A, 2A, 2B, 3A, 6A, 6B and 7B with the QTL on chromosome 1A and those on chromosome 5A being more consistently expressed over environments. FHB resistance co-located with plant height and maturity QTL on chromosome 5A and with a maturity QTL on chromosome 7A for the DT707 × DT696 population. Resistance also co-located with plant height QTL on chromosomes 2A and 3A and with maturity QTL on chromosomes 1A and 7B for the Strongfield × Blackbird population. Additive × additive interactions were identified, for example between the two FHB resistance QTL on chromosome 5A for the DT707 × DT696 population and the FHB resistance QTL on chromosomes 1A and 7B for the Strongfield × Blackbird population. Application of the Single Nucleotide Polymorphic (SNP) markers associated with FHB resistance QTL identified in this study will accelerate combining genes from the two populations.


Assuntos
Resistência à Doença/genética , Fusarium , Doenças das Plantas/genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/genética , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Especificidade da Espécie , Triticum/anatomia & histologia
18.
Plant Sci ; 243: 71-83, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26795152

RESUMO

1-Deoxy-D-xylulose 5-phosphate synthase (DXS) catalyzes the initial step of the plastidial 2C-methyl-D-erythritol-4-phosphate (DOXP-MEP) pathway involved in isoprenoid biosynthesis. In this study, we cloned the complete cDNA of potato DXS gene that was designated StDXS1. StDXS1 cDNA encodes for 719 amino acid residues, with MW of 77.8 kDa, and is present in one copy in the potato genome. Phylogenetic analysis and protein sequence alignments assigned StDXS1 to a group with DXS homologues from closely related species and exhibited homodomain identity with known DXS proteins from other plant species. Late blight symptoms occurred in parallel with a reduction in StDXS1 transcript levels, which may be associated with the levels of isoprenoids that contribute to plant protection against pathogens. Subcellular localization indicated that StDXS1 targets the chloroplasts where isoprenoids are synthesized. Arabidopsis expressing StDXS1 showed a higher accumulation of carotenoids and chlorophyll as compared to wild type controls. Lower levels of ABA and GA were detected in the transgenic DXS lines as compared to control plants, which reflected on higher germination rates of the transgenic DXS lines. No changes were detected in JA or SA contents. Selected downstream genes in the DOXP-MEP pathway, especially GGPPS genes, were up-regulated in the transgenic lines.


Assuntos
Regulação da Expressão Gênica de Plantas , Phytophthora infestans/fisiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Transferases/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , DNA de Plantas/genética , DNA de Plantas/metabolismo , Ácido Eicosapentaenoico/metabolismo , Glucanos/metabolismo , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Análise de Sequência de DNA , Transferases/metabolismo
19.
Phytopathology ; 92(6): 580-9, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18944253

RESUMO

ABSTRACT Coevolution of the angular leaf spot pathogen, Phaeoisariopsis griseola, with its common bean host has been demonstrated, and P. griseola isolates have been divided into Andean and Mesoamerican groups that correspond to defined bean gene pools. Recent characterization of P. griseola isolates from Africa has identified a group of isolates classified as Andean using random amplified polymorphic DNA (RAPD), but which are able to infect some Mesoamerican differential varieties. These isolates, designated Afro-Andean, have been identified only in Africa. Random amplified microsatellites, RAPD, and restriction digestion of amplified ribosomal intergenic spacer region were used to elucidate the relationships among the Afro-Andean, Andean, and Mesoamerican groups of P. griseola. Cluster and multiple correspondence analysis of molecular data separated isolates into Andean and Meso-american groups, and the Afro-Andean isolates clustered with Andean isolates. Analysis of molecular variance ascribed 2.8% of the total genetic variation to differences between Afro-Andean and Andean isolates from Africa. Gene diversity analysis revealed no genetic differentiation (G(ST) = 0.004) between Afro-Andean and Andean isolates from Africa. However, significant levels of genetic differentiation (G(ST) = 0.39) were observed between Afro-Andean or Andean isolates from Africa and Andean isolates from Latin America, revealing significant geographical differentiation within the Andean lineage. Results from this study showed that Afro-Andean isolates do not constitute a new P. griseola group and do not represent long-term evolution of the pathogen genome, but rather are likely the consequents of point mutations in genes for virulence. This finding has significant implications in the deployment of resistant bean genotypes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa