Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 33: 127-144, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28613937

RESUMO

In metazoans, removal of cells in situ is involved in larval maturation, metamorphosis, and embryonic development. In adults, such cell removal plays a role in the homeostatic maintenance of cell numbers and tissue integrity as well as in the response to cell injury and damage. This removal involves uptake of the whole or fragmented target cells into phagocytes. Depending on the organism, these latter may be near-neighbor tissue cells and/or professional phagocytes such as, in vertebrates, members of the myeloid family of cells, especially macrophages. The uptake processes appear to involve specialized and highly conserved recognition ligands and receptors, intracellular signaling in the phagocytes, and mechanisms for ingestion. The recognition of cells destined for this form of removal is critical and, significantly, is distinguished for the most part from the recognition of foreign materials and organisms by the innate and adaptive immune systems. In keeping with the key role of cell removal in maintaining tissue homeostasis, constant cell removal is normally silent, i.e., does not initiate a local tissue reaction. This article discusses these complex and wide-ranging processes in general terms as well as the implications when these processes are disrupted in inflammation, immunity, and disease.


Assuntos
Fagocitose , Animais , Apoptose , Doença , Homeostase , Humanos , Espaço Intracelular/metabolismo , Fagócitos/citologia
2.
Blood ; 139(11): 1707-1721, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-34699591

RESUMO

Loss of NADPH oxidase activity leads to altered phagocyte responses and exaggerated inflammation in chronic granulomatous disease (CGD). We sought to assess the effects of Nox2 absence on monocyte-derived macrophages (MoMacs) in gp91phox-/y mice during zymosan-induced peritonitis. MoMacs from CGD and wild-type (WT) peritonea were characterized over time after zymosan injection. Although numbers lavaged from both genotypes were virtually identical, there were marked differences in maturation: newly recruited WT MoMacs rapidly enlarged and matured, losing Ly6C and gaining MHCII, CD206, and CD36, whereas CGD MoMacs remained small and were mostly Ly6C+MHCII-. RNA-sequencing analyses showed few intrinsic differences between genotypes in newly recruited MoMacs but significant differences with time. WT MoMacs displayed changes in metabolism, adhesion, and reparative functions, whereas CGD MoMacs remained inflammatory. PKH dye labeling revealed that although WT MoMacs were mostly recruited within the first 24 hours and remained in the peritoneum while maturing and enlarging, CGD monocytes streamed into the peritoneum for days, with many migrating to the diaphragm where they were found in fibrin(ogen) clots surrounding clusters of neutrophils in nascent pyogranulomata. Importantly, these observations seemed to be driven by milieu: adoptive transfer of CGD MoMacs into inflamed peritonea of WT mice resulted in immunophenotypic maturation and normal behavior, whereas altered maturation/behavior of WT MoMacs resulted from transfer into inflamed peritonea of CGD mice. In addition, Nox2-deficient MoMacs behaved similarly to their Nox2-sufficient counterparts within the largely WT milieu of mixed bone marrow chimeras. These data show persistent recruitment with fundamental failure of MoMac maturation in CGD.


Assuntos
Doença Granulomatosa Crônica , Animais , Doença Granulomatosa Crônica/genética , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo
3.
Am J Physiol Lung Cell Mol Physiol ; 324(4): L536-L549, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36852927

RESUMO

Interstitial macrophages (IMs) reside in the lung tissue surrounding key structures including airways, vessels, and alveoli. Recent work has described IM heterogeneity during homeostasis, however, there are limited data on IMs during inflammation. We sought to characterize IM origin, subsets, and transcriptomic profiles during homeostasis and lipopolysaccharide (LPS) induced acute lung inflammation. During homeostasis, we used three complementary methods, spectral flow cytometry, single-cell RNA-sequencing, and gene regulatory network enrichment, to demonstrate that IMs can be divided into two core subsets distinguished by surface and transcriptional expression of folate receptor ß (Folr2/FRß). These subsets inhabited distinct niches within the lung interstitium. Within FRß+ IMs we identified a subpopulation marked by coexpression of LYVE1. During acute LPS-induced inflammation, lung IM numbers expand. Lineage tracing revealed IM expansion was due to recruitment of monocyte-derived IMs. At the peak of inflammation, recruited IMs were comprised two unique subsets defined by expression of genes associated with interferon signaling and glycolytic pathways. As recruited IMs matured, they adopted the overall transcriptional state of FRß- resident IMs but retained expression in several origin-specific genes, such as IL-1ß. FRß+ IMs were of near-pure resident origin. Taken together our data show that during LPS-induced inflammation, there are distinct populations of IMs that likely have unique functions. FRΒ+ IMs comprise a stable, resident population, whereas FRß- ΙΜs represent a mixed population of resident and recruited IMs.


Assuntos
Receptor 2 de Folato , Pneumonia , Humanos , Monócitos/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/metabolismo , Inflamação/genética , Inflamação/metabolismo , Análise de Sequência de RNA/métodos , Receptor 2 de Folato/metabolismo
4.
Am J Physiol Lung Cell Mol Physiol ; 323(4): L391-L399, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35943156

RESUMO

The pathogenesis of chronic obstructive pulmonary disease (COPD), a prevalent disease primarily caused by cigarette smoke exposure, is incompletely elucidated. Studies in humans and mice have suggested that hypoxia-inducible factor-1α (HIF-1α) may play a role. Reduced lung levels of HIF-1α are associated with decreased vascular density, whereas increased leukocyte HIF-1α may be responsible for increased inflammation. To elucidate the specific role of leukocyte HIF-1α in COPD, we exposed transgenic mice with conditional deletion or overexpression of HIF-1α in leukocytes to cigarette smoke for 7 mo. Outcomes included pulmonary physiology, aerated lung volumes via microcomputed tomography, lung morphometry and histology, and cardiopulmonary hemodynamics. On aggregate, cigarette smoke increased the aerated lung volume, quasi-static lung compliance, inspiratory capacity of all strains while reducing the total alveolar septal volume. Independent of smoke exposure, mice with leukocyte-specific HIF-1α overexpression had increased quasi-static compliance, inspiratory capacity, and alveolar septal volume compared with mice with leukocyte-specific HIF-1α deletion. However, the overall development of cigarette smoke-induced lung disease did not vary relative to control mice for either of the conditional strains. This suggests that the development of murine cigarette smoke-induced airspace disease occurs independently of leukocyte HIF-1α signaling.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Modelos Animais de Doenças , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Leucócitos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/patologia , Nicotiana/efeitos adversos , Microtomografia por Raio-X
5.
Immunity ; 39(3): 599-610, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-24012416

RESUMO

It is thought that monocytes rapidly differentiate to macrophages or dendritic cells (DCs) upon leaving blood. Here we have shown that Ly-6C⁺ monocytes constitutively trafficked into skin, lung, and lymph nodes (LNs). Entry was unaffected in gnotobiotic mice. Monocytes in resting lung and LN had similar gene expression profiles to blood monocytes but elevated transcripts of a limited number of genes including cyclo-oxygenase-2 (COX-2) and major histocompatibility complex class II (MHCII), induced by monocyte interaction with endothelium. Parabiosis, bromodoxyuridine (BrdU) pulse-chase analysis, and intranasal instillation of tracers indicated that instead of contributing to resident macrophages in the lung, recruited endogenous monocytes acquired antigen for carriage to draining LNs, a function redundant with DCs though differentiation to DCs did not occur. Thus, monocytes can enter steady-state nonlymphoid organs and recirculate to LNs without differentiation to macrophages or DCs, revising a long-held view that monocytes become tissue-resident macrophages by default.


Assuntos
Diferenciação Celular , Células Dendríticas/metabolismo , Linfonodos/citologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Animais , Antígenos Ly/metabolismo , Movimento Celular , Ciclo-Oxigenase 2/genética , Células Dendríticas/citologia , Células Dendríticas/imunologia , Endotélio/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Pulmão/citologia , Linfonodos/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Pele/citologia
6.
Am J Respir Crit Care Med ; 203(8): 946-956, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33079572

RESUMO

Rationale: Macrophages are the most abundant immune cell in the alveoli and small airways and are traditionally viewed as a homogeneous population during health. Whether distinct subsets of airspace macrophages are present in healthy humans is unknown. Single-cell RNA sequencing allows for examination of transcriptional heterogeneity between cells and between individuals. Understanding the conserved repertoire of airspace macrophages during health is essential to understanding cellular programing during disease.Objectives: We sought to determine the transcriptional heterogeneity of human cells obtained from BAL of healthy adults.Methods: Ten subjects underwent bronchoscopy with BAL. Cells from lavage were subjected to single-cell RNA sequencing. Unique cell populations and putative functions were identified. Transcriptional profiles were compared across individuals.Measurements and Main Results: We identify two novel subgroups of resident airspace macrophages-defined by proinflammatory and metallothionein gene expression profiles. We define subsets of monocyte-like cells and compare them with peripheral blood mononuclear cells. Finally, we compare global macrophage and monocyte programing between males and females.Conclusions: Healthy human airspaces contain multiple populations of myeloid cells that are highly conserved between individuals and between sexes. Resident macrophages make up the largest population and include novel subsets defined by inflammatory and metal-binding profiles. Monocyte-like cells within the airspaces are transcriptionally aligned with circulating blood cells and include a rare population defined by expression of cell-matrix interaction genes. This study is the first to delineate the conserved heterogeneity of airspace immune cells during health and identifies two previously unrecognized macrophage subsets.


Assuntos
Líquido da Lavagem Broncoalveolar/imunologia , Perfilação da Expressão Gênica , Leucócitos Mononucleares/imunologia , Macrófagos Alveolares/imunologia , Monócitos/imunologia , Alvéolos Pulmonares/imunologia , Análise de Sequência de RNA , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Fatores Sexuais
7.
Immunity ; 36(5): 807-20, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22542147

RESUMO

Toll-like receptor (TLR) stimulation activates macrophages to resist intracellular pathogens. Yet, the intracellular bacterium Listeria monocytogenes (Lm) causes lethal infections in spite of innate immune cell activation. Lm uses direct cell-cell spread to disseminate within its host. Here, we have shown that TLR-activated macrophages killed cell-free Lm but failed to prevent infection by spreading Lm. Instead, TLR signals increased the efficiency of Lm spread from "donor" to "recipient" macrophages. This enhancement required nitric oxide (NO) production by nitric oxide synthase-2 (NOS2). NO increased Lm escape from secondary vacuoles in recipient cells and delayed maturation of phagosomes containing membrane-like particles that mimic Lm-containing pseudopods. NO also promoted Lm spread during systemic in vivo infection, as shown by the fact that inhibition of NOS2 with 1400W reduced spread-dependent Lm burdens in mouse livers. These findings reveal a mechanism by which pathogens capable of cell-cell spread can avoid the consequences of innate immune cell activation by TLR stimuli.


Assuntos
Listeria monocytogenes/imunologia , Listeriose/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Receptores Toll-Like/metabolismo , Animais , Células Cultivadas , Imunidade Inata/imunologia , Listeria monocytogenes/metabolismo , Listeriose/metabolismo , Ativação de Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/imunologia , Óxido Nítrico Sintase Tipo II/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo , Fagossomos/imunologia , Fagossomos/metabolismo , Receptores Toll-Like/imunologia
8.
Am J Respir Crit Care Med ; 201(10): 1209-1217, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32197050

RESUMO

Rationale: Interstitial macrophages (IMs) and airspace macrophages (AMs) play critical roles in lung homeostasis and host defense, and are central to the pathogenesis of a number of lung diseases. However, the absolute numbers of macrophages and the precise anatomic locations they occupy in the healthy human lung have not been quantified.Objectives: To determine the precise number and anatomic location of human pulmonary macrophages in nondiseased lungs and to quantify how this is altered in chronic cigarette smokers.Methods: Whole right upper lobes from 12 human donors without pulmonary disease (6 smokers and 6 nonsmokers) were evaluated using design-based stereology. CD206 (cluster of differentiation 206)-positive/CD43+ AMs and CD206+/CD43- IMs were counted in five distinct anatomical locations using the optical disector probe.Measurements and Main Results: An average of 2.1 × 109 IMs and 1.4 × 109 AMs were estimated per right upper lobe. Of the AMs, 95% were contained in diffusing airspaces and 5% in airways. Of the IMs, 78% were located within the alveolar septa, 14% around small vessels, and 7% around the airways. The local density of IMs was greater in the alveolar septa than in the connective tissue surrounding the airways or vessels. The total number and density of IMs was 36% to 56% greater in the lungs of cigarette smokers versus nonsmokers.Conclusions: The precise locations occupied by pulmonary macrophages were defined in nondiseased human lungs from smokers and nonsmokers. IM density was greatest in the alveolar septa. Lungs from chronic smokers had increased IM numbers and overall density, supporting a role for IMs in smoking-related disease.


Assuntos
Fumar Cigarros/patologia , Pulmão/patologia , Macrófagos Alveolares/patologia , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Contagem de Células , Feminino , Humanos , Imuno-Histoquímica , Lectinas Tipo C/metabolismo , Leucossialina/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Pessoa de Meia-Idade , Dispositivos Ópticos , Receptores de Superfície Celular/metabolismo , Doadores de Tecidos
9.
Nature ; 505(7483): 412-6, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24317696

RESUMO

Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them through mucociliary clearance (MCC). However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus. Genetic variants are linked to diverse lung diseases, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that mouse Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in mouse lungs, whereas Muc5ac is dispensable. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally. Apoptotic macrophages accumulated, phagocytosis was impaired, and interleukin-23 (IL-23) production was reduced in Muc5b(-/-) mice. By contrast, in mice that transgenically overexpress Muc5b, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC.


Assuntos
Pulmão/imunologia , Mucina-5B/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Animais , Asma/imunologia , Asma/metabolismo , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Cílios/fisiologia , Orelha Média/imunologia , Orelha Média/microbiologia , Feminino , Inflamação/patologia , Pulmão/metabolismo , Pulmão/microbiologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Mucina-5AC/deficiência , Mucina-5AC/metabolismo , Mucina-5B/deficiência , Mucina-5B/genética , Fagocitose , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Staphylococcus aureus/imunologia , Análise de Sobrevida
10.
Am J Respir Cell Mol Biol ; 59(5): 580-591, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29953261

RESUMO

Early recognition of neoantigen-expressing cells is complex, involving multiple immune cell types. In this study, in vivo, we examined how antigen-presenting cell subtypes coordinate and induce an immunological response against neoantigen-expressing cells, particularly in the absence of a pathogen-associated molecular pattern, which is normally required to license antigen-presenting cells to present foreign or self-antigens as immunogens. Using two reductionist models of neoantigen-expressing cells and two cancer models, we demonstrated that natural IgM is essential for the recognition and initiation of adaptive immunity against neoantigen-expressing cells. Natural IgM antibodies form a cellular immune complex with the neoantigen-expressing cells. This immune complex licenses surveying monocytes to present neoantigens as immunogens to CD4+ T cells. CD4+ T helper cells, in turn, use CD40L to license cross-presenting CD40+ Batf3+ dendritic cells to elicit a cytotoxic T cell response against neoantigen-expressing cells. Any break along this immunological chain reaction results in the escape of neoantigen-expressing cells. This study demonstrates the surprising, essential role of natural IgM as the initiator of a sequential signaling cascade involving multiple immune cell subtypes. This sequence is required to coordinate an adaptive immune response against neoantigen-expressing cells.


Assuntos
Imunidade Adaptativa , Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Imunoglobulina M/imunologia , Neoplasias Pulmonares/imunologia , Melanoma Experimental/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Ligante de CD40/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Feminino , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Ativação Linfocitária , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Monócitos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa