Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Circ Res ; 111(9): 1125-36, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22912385

RESUMO

RATIONALE: Cardiomyocytes (CMs) differentiated from human pluripotent stem cells (PSCs) are increasingly being used for cardiovascular research, including disease modeling, and hold promise for clinical applications. Current cardiac differentiation protocols exhibit variable success across different PSC lines and are primarily based on the application of growth factors. However, extracellular matrix is also fundamentally involved in cardiac development from the earliest morphogenetic events, such as gastrulation. OBJECTIVE: We sought to develop a more effective protocol for cardiac differentiation of human PSCs by using extracellular matrix in combination with growth factors known to promote cardiogenesis. METHODS AND RESULTS: PSCs were cultured as monolayers on Matrigel, an extracellular matrix preparation, and subsequently overlayed with Matrigel. The matrix sandwich promoted an epithelial-to-mesenchymal transition as in gastrulation with the generation of N-cadherin-positive mesenchymal cells. Combining the matrix sandwich with sequential application of growth factors (Activin A, bone morphogenetic protein 4, and basic fibroblast growth factor) generated CMs with high purity (up to 98%) and yield (up to 11 CMs/input PSC) from multiple PSC lines. The resulting CMs progressively matured over 30 days in culture based on myofilament expression pattern and mitotic activity. Action potentials typical of embryonic nodal, atrial, and ventricular CMs were observed, and monolayers of electrically coupled CMs modeled cardiac tissue and basic arrhythmia mechanisms. CONCLUSIONS: Dynamic extracellular matrix application promoted epithelial-mesenchymal transition of human PSCs and complemented growth factor signaling to enable robust cardiac differentiation.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Colágeno , Matriz Extracelular/fisiologia , Laminina , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Proteoglicanas , Ativinas/farmacologia , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Combinação de Medicamentos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/fisiologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
2.
Circulation ; 124(10): 1124-31, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21859973

RESUMO

BACKGROUND: Human heart failure is associated with decreased cardiac voltage-gated Na+ channel current (encoded by SCN5A), and the changes have been implicated in the increased risk of sudden death in heart failure. Nevertheless, the mechanism of SCN5A downregulation is unclear. A number of human diseases are associated with alternative mRNA splicing, which has received comparatively little attention in the study of cardiac disease. Splicing factor expression profiles during human heart failure and a specific splicing pathway for SCN5A regulation were explored in this study. METHODS AND RESULTS: Gene array comparisons between normal human and heart failure tissues demonstrated that 17 splicing factors, associated with all major spliceosome components, were upregulated. Two of these splicing factors, RBM25 and LUC7L3, were elevated in human heart failure tissue and mediated truncation of SCN5A mRNA in both Jurkat cells and human embryonic stem cell-derived cardiomyocytes. RBM25/LUC7L3-mediated abnormal SCN5A mRNA splicing reduced Na+ channel current 91.1±9.3% to a range known to cause sudden death. Overexpression of either splicing factor resulted in an increase in truncated mRNA and a concomitant decrease in the full-length SCN5A transcript. CONCLUSIONS: Of the 17 mRNA splicing factors upregulated in heart failure, RBM25 and LUC7L3 were sufficient to explain the increase in truncated forms and the reduction in full-length Na+ channel transcript. Because the reduction in channels was in the range known to be associated with sudden death, interruption of this abnormal mRNA processing may reduce arrhythmic risk in heart failure.


Assuntos
Insuficiência Cardíaca/genética , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Canais de Sódio/genética , Adulto , Idoso , Células Cultivadas , Regulação para Baixo , Células-Tronco Embrionárias/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Células Jurkat , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5 , Proteínas Nucleares , Spliceossomos/metabolismo , Regulação para Cima , Adulto Jovem
3.
Circ Arrhythm Electrophysiol ; 6(5): 1018-24, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24036084

RESUMO

BACKGROUND: Human heart failure (HF) increases alternative mRNA splicing of the type V, voltage-gated cardiac Na+ channel α-subunit (SCN5A), generating variants encoding truncated, nonfunctional channels that are trapped in the endoplasmic reticulum. In this work, we tested whether truncated Na+ channels activate the unfolded protein response (UPR), contributing to SCN5A electric remodeling in HF. METHODS AND RESULTS: UPR and SCN5A were analyzed in human ventricular systolic HF tissue samples and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Cells were exposed to angiotensin II (AngII) and hypoxia, known activators of abnormal SCN5A mRNA splicing, or were induced to overexpress SCN5A variants. UPR effectors, protein kinase R-like ER kinase (PERK), calreticulin, and CHOP, were increased in human HF tissues. Induction of SCN5A variants with AngII or hypoxia or the expression of exogenous variants induced the UPR with concomitant downregulation of Na+ current. PERK activation destabilized SCN5A and, surprisingly, Kv4.3 channel mRNAs but not transient receptor potential cation channel M7 (TRPM7) channel mRNA. PERK inhibition prevented the loss of full-length SCN5A and Kv4.3 mRNA levels resulting from expressing Na+ channel mRNA splice variants. CONCLUSIONS: UPR can be initiated by Na+ channel mRNA splice variants and is involved in the reduction of cardiac Na+ current during human HF. Because the effect is not entirely specific to the SCN5A transcript, the UPR may play an important role in downregulation of multiple cardiac genes in HF.


Assuntos
Insuficiência Cardíaca Sistólica/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Sódio/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Angiotensina II/farmacologia , Western Blotting , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Calreticulina/metabolismo , Técnicas Eletrofisiológicas Cardíacas , Retículo Endoplasmático/metabolismo , Insuficiência Cardíaca Sistólica/fisiopatologia , Humanos , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transfecção , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa