Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
PLoS Pathog ; 16(8): e1008685, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32745153

RESUMO

Smallpox and monkeypox pose severe threats to human health. Other orthopoxviruses are comparably virulent in their natural hosts, including ectromelia, the cause of mousepox. Disease severity is linked to an array of immunomodulatory proteins including the B22 family, which has homologs in all pathogenic orthopoxviruses but not attenuated vaccine strains. We demonstrate that the ectromelia B22 member, C15, is necessary and sufficient for selective inhibition of CD4+ but not CD8+ T cell activation by immunogenic peptide and superantigen. Inhibition is achieved not by down-regulation of surface MHC- II or co-stimulatory protein surface expression but rather by interference with antigen presentation. The appreciable outcome is interference with CD4+ T cell synapse formation as determined by imaging studies and lipid raft disruption. Consequently, CD4+ T cell activating stimulus shifts to uninfected antigen-presenting cells that have received antigen from infected cells. This work provides insight into the immunomodulatory strategies of orthopoxviruses by elucidating a mechanism for specific targeting of CD4+ T cell activation, reflecting the importance of this cell type in control of the virus.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Proteínas Virais/imunologia , Animais , Ectromelia Infecciosa/metabolismo , Ectromelia Infecciosa/virologia , Feminino , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Virais/metabolismo , Virulência
2.
J Virol ; 88(16): 9472-5, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24899206

RESUMO

We assessed several routes of immunization with vaccinia virus (VACV) in protecting mice against ectromelia virus (ECTV). By a wide margin, skin scarification provided the greatest protection. Humoral immunity and resident-memory T cells notwithstanding, several approaches revealed that circulating, memory CD8(+) T cells primed via scarification were functionally superior and conferred enhanced virus control. Immunization via the epithelial route warrants further investigation, as it may also provide enhanced defense against other infectious agents.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/imunologia , Epitélio/imunologia , Vaccinia virus/imunologia , Animais , Imunidade Humoral/imunologia , Imunização/métodos , Memória Imunológica/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Vacinação/métodos
3.
J Virol ; 88(17): 10078-91, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24965457

RESUMO

UNLABELLED: The factors that determine CD4+ T cell (TCD4+) specificities, functional capacity, and memory persistence in response to complex pathogens remain unclear. We explored these parameters in the C57BL/6 mouse through comparison of two highly related (>92% homology) poxviruses: ectromelia virus (ECTV), a natural mouse pathogen, and vaccinia virus (VACV), a heterologous virus that nevertheless elicits potent immune responses. In addition to elucidating several previously unidentified major histocompatibility complex class II (MHC-II)-restricted epitopes, we observed many qualitative and quantitative differences between the TCD4+ repertoires, including responses not elicited by VACV despite complete sequence conservation. In addition, we observed functional heterogeneity between ECTV- and VACV-specific TCD4+ at both a global and individual epitope level, particularly greater expression of the cytolytic marker CD107a from TCD4+ following ECTV infection. Most striking were differences during the late memory phase where, in contrast to ECTV, VACV infection failed to elicit measurable epitope-specific TCD4+ as determined by intracellular cytokine staining. These findings illustrate the strong influence of epitope-extrinsic factors on TCD4+ responses and memory. IMPORTANCE: Much of our understanding concerning host-pathogen relationships in the context of poxvirus infections stems from studies of VACV in mice. However, VACV is not a natural mouse pathogen, and therefore, the relevance of results obtained using this model may be limited. Here, we explored the MHC class II-restricted TCD4+ repertoire induced by mousepox (ECTV) infection and the functional profile of the responding epitope-specific TCD4+, comparing these results to those induced by VACV infection under matched conditions. Despite a high degree of homology between the two viruses, we observed distinct specificity and functional profiles of TCD4+ responses at both acute and memory time points, with VACV-specific TCD4+ memory being notably compromised. These data offer insight into the impact of epitope-extrinsic factors on the resulting TCD4+ responses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Vírus da Ectromelia/imunologia , Infecções por Poxviridae/imunologia , Infecções por Poxviridae/virologia , Vaccinia virus/imunologia , Animais , Citocinas/biossíntese , Modelos Animais de Doenças , Epitopos/imunologia , Feminino , Memória Imunológica , Camundongos Endogâmicos C57BL , Subpopulações de Linfócitos T/imunologia
4.
Proc Natl Acad Sci U S A ; 109(25): 9983-8, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22665800

RESUMO

CD4(+) T cells are generally regarded as helpers and regulators of the immune response. Although cytolytic CD4(+) T cells have been described, whether those generated during the course of a viral infection play a role in virus control remains unknown. Here we show that during acute infection with ectromelia virus, the mouse homolog of the human virus of smallpox, large numbers of CD4(+) T cells in the draining lymph node and liver of resistant mice have a cytotoxic phenotype. We also show that these cells kill targets in vivo in a perforin-dependent manner and that mice with specific deficiency of perforin in CD4(+) T cells have impaired virus control. Thus, perforin-dependent CD4(+) T-cell killing of infected cells is an important mechanism of antiviral defense.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Citotoxicidade Imunológica , Vírus da Ectromelia/imunologia , Perforina/imunologia , Animais , Complexo Principal de Histocompatibilidade/imunologia , Camundongos
5.
J Virol ; 86(13): 7298-309, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22532670

RESUMO

Vaccinia virus (VACV) stimulates long-term immunity against highly pathogenic orthopoxvirus infection of humans (smallpox) and mice (mousepox [ectromelia virus {ECTV}]) despite the lack of a natural host-pathogen relationship with either of these species. Previous research revealed that VACV is able to induce polyfunctional CD8(+) T-cell responses after immunization of humans. However, the degree to which the functional profile of T cells induced by VACV is similar to that generated during natural poxvirus infection remains unknown. In this study, we monitored virus-specific T-cell responses following the dermal infection of C57BL/6 mice with ECTV or VACV. Using polychromatic flow cytometry, we measured levels of degranulation, cytokine expression (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-2 [IL-2]), and the cytolytic mediator granzyme B. We observed that the functional capacities of T cells induced by VACV and ECTV were of a similar quality in spite of the markedly different replication abilities and pathogenic outcomes of these viruses. In general, a significant fraction (≥50%) of all T-cell responses were positive for at least three functions both during acute infection and into the memory phase. In vivo killing assays revealed that CD8(+) T cells specific for both viruses were equally cytolytic (∼80% target cell lysis after 4 h), consistent with the similar levels of granzyme B and degranulation detected among these cells. Collectively, these data provide a mechanism to explain the ability of VACV to induce protective T-cell responses against pathogenic poxviruses in their natural hosts and provide further support for the use of VACV as a vaccine platform able to induce polyfunctional T cells.


Assuntos
Vírus da Ectromelia/imunologia , Linfócitos T/imunologia , Vaccinia virus/imunologia , Animais , Degranulação Celular , Citocinas/biossíntese , Testes Imunológicos de Citotoxicidade , Modelos Animais de Doenças , Vírus da Ectromelia/patogenicidade , Vírus da Ectromelia/fisiologia , Ectromelia Infecciosa/imunologia , Feminino , Citometria de Fluxo , Granzimas/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Citotóxicos/imunologia , Vacínia/imunologia , Vaccinia virus/patogenicidade , Vaccinia virus/fisiologia
6.
Blood ; 117(14): 3799-808, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21289310

RESUMO

Recent data suggest that CD8+ T-cell effector activity is an important component in the control of HIV replication in elite controllers (ECs). One critical element of CD8+ T-cell effector function and differentiation is the T-box transcription factor T-bet. In the present study, we assessed T-bet expression, together with the effector proteins perforin, granzyme A (Grz A), granzyme B (Grz B), and granulysin, in HIV-specific CD8+ T cells from ECs (n = 20), chronically infected progressors (CPs; n = 18), and highly active antiretroviral therapy (HAART)-suppressed individuals (n = 19). Compared with the other cohort groups, HIV-specific CD8+ T cells among ECs demonstrated a superior ability to express perforin and Grz B, but with no detectable difference in the levels of Grz A or granulysin. We also observed higher levels of T-bet in HIV-specific CD8+ T cells from ECs, with an ensuing positive correlation between T-bet and levels of both perforin and Grz B. Moreover, HIV-specific CD8+ T cells in ECs up-regulated T-bet to a greater extent than CPs after in vitro expansion, with concomitant up-regulation of perforin and Grz B. These results suggest that T-bet may play an important role in driving effector function, and its modulation may lead to enhanced effector activity against HIV.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Infecções por HIV/imunologia , HIV/imunologia , Proteínas com Domínio T/metabolismo , Fármacos Anti-HIV/uso terapêutico , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD8-Positivos/patologia , Estudos de Coortes , Estudos Transversais , Progressão da Doença , Granzimas/metabolismo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Humanos , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/imunologia , Tolerância Imunológica/fisiologia , Perforina/metabolismo , Proteínas com Domínio T/fisiologia , Especificidade do Receptor de Antígeno de Linfócitos T , Resultado do Tratamento
7.
PLoS Pathog ; 6(3): e1000798, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20221423

RESUMO

The prevailing paradigm of T lymphocyte control of viral replication is that the protective capacity of virus-specific CD8(+) T cells is directly proportional to the number of functions they can perform, with IL-2 production capacity considered critical. Having recently defined rapid perforin upregulation as a novel effector function of antigen-specific CD8(+) T cells, here we sought to determine whether new perforin production is a component of polyfunctional CD8(+) T cell responses that contributes to the control of several human viral infections: cytomegalovirus (CMV), Epstein-Barr virus (EBV), influenza (flu), and adenovirus (Ad). We stimulated normal human donor PBMC with synthetic peptides whose amino acid sequences correspond to defined CTL epitopes in the aforementioned viruses, and then used polychromatic flow cytometry to measure the functional capacity and the phenotype of the responding CD8(+) T cells. While EBV and flu-specific CD8(+) T cells rarely upregulate perforin, CMV-specific cells often do and Ad stimulates an exceptionally strong perforin response. The differential propensity of CD8(+) T cells to produce either IL-2 or perforin is in part related to levels of CD28 and the transcription factor T-bet, as CD8(+) T cells that rapidly upregulate perforin harbor high levels of T-bet and those producing IL-2 express high amounts of CD28. Thus, "polyfunctional" profiling of antigen-specific CD8(+) T cells must not be limited to simply the number of functions the cell can perform, or one particular memory phenotype, but should actually define which combinations of memory markers and functions are relevant in each pathogenic context.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Interleucina-2/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Viroses/imunologia , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Infecções por Citomegalovirus/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Humanos , Memória Imunológica/imunologia , Imunofenotipagem , Influenza Humana/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-2/imunologia , Ativação Linfocitária/imunologia , Perforina , Proteínas Citotóxicas Formadoras de Poros/imunologia , Proteínas com Domínio T/imunologia , Proteínas com Domínio T/metabolismo , Regulação para Cima/imunologia
8.
PLoS Pathog ; 6(5): e1000917, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20523897

RESUMO

Many immune correlates of CD8(+) T-cell-mediated control of HIV replication, including polyfunctionality, proliferative ability, and inhibitory receptor expression, have been discovered. However, no functional correlates using ex vivo cells have been identified with the known ability to cause the direct elimination of HIV-infected cells. We have recently discovered the ability of human CD8(+) T-cells to rapidly upregulate perforin--an essential molecule for cell-mediated cytotoxicity--following antigen-specific stimulation. Here, we examined perforin expression capability in a large cross-sectional cohort of chronically HIV-infected individuals with varying levels of viral load: elite controllers (n = 35), viremic controllers (n = 29), chronic progressors (n = 27), and viremic nonprogressors (n = 6). Using polychromatic flow cytometry and standard intracellular cytokine staining assays, we measured perforin upregulation, cytokine production, and degranulation following stimulation with overlapping peptide pools encompassing all proteins of HIV. We observed that HIV-specific CD8(+) T-cells from elite controllers consistently display an enhanced ability to express perforin directly ex vivo compared to all other groups. This ability is not restricted to protective HLA-B haplotypes, does not require proliferation or the addition of exogenous factors, is not restored by HAART, and primarily originates from effector CD8(+) T-cells with otherwise limited functional capability. Notably, we found an inverse relationship between HIV-specific perforin expression and viral load. Thus, the capability of HIV-specific CD8(+) T-cells to rapidly express perforin defines a novel correlate of control in HIV infection.


Assuntos
Linfócitos T CD8-Positivos , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Vacinas contra a AIDS/imunologia , Imunidade Adaptativa/genética , Imunidade Adaptativa/imunologia , Alelos , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Estudos de Coortes , Estudos Transversais , Citocinas/metabolismo , Progressão da Doença , Citometria de Fluxo , Infecções por HIV/tratamento farmacológico , Antígenos HLA-B/genética , Haplótipos , Humanos , Perforina , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/virologia , Carga Viral/imunologia , Replicação Viral/imunologia
9.
J Immunol ; 182(9): 5560-9, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19380804

RESUMO

CTL are endowed with the ability to eliminate pathogens through perforin-mediated cytotoxic activity. The mechanism for perforin-mediated Ag-specific killing has been solely attributed to cytotoxic granule exocytosis from activated CD8(+) T cells. In this study, we redefine this mechanism, demonstrating that virus-specific CD8(+) T cells rapidly up-regulate perforin in response to stimulation temporally with IFN-gamma and CD107a expression. Following Ag-specific activation, newly synthesized perforin rapidly appears at the immunological synapse, both in association with and independent of cytotoxic granules, where it functions to promote cytotoxicity. Our work suggests a novel mechanism of CTL cytotoxicity and identifies a novel correlate of CD8(+) T cell-mediated immunity.


Assuntos
Grânulos Citoplasmáticos/imunologia , Testes Imunológicos de Citotoxicidade , Epitopos de Linfócito T/imunologia , Sinapses Imunológicas/imunologia , Perforina/biossíntese , Perforina/fisiologia , Linfócitos T Citotóxicos/imunologia , Regulação para Cima/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Degranulação Celular/imunologia , Linhagem Celular Transformada , Grânulos Citoplasmáticos/metabolismo , Testes Imunológicos de Citotoxicidade/métodos , Humanos , Ativação Linfocitária/imunologia , Perforina/metabolismo , Transporte Proteico/imunologia , Transdução de Sinais/imunologia , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/virologia
10.
Virology ; 564: 1-12, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34560573

RESUMO

Many poxviruses produce proteins that are related to epidermal growth factor (EGF). Prior genome sequencing of ectromelia virus revealed a gene predicted to produce a protein with homology to EGF, which we refer to as ectromelia growth factor (ECGF). ECGF is truncated relative to vaccinia growth factor (VGF) because the former lacks a transmembrane domain. We show these proteins can experience differential N-linked glycosylation. Despite these differences, both proteins maintain the six conserved cysteine residues important for the function of EGF. Since ECGF has not been characterized, our objective was to determine if it can act as a growth factor. We added ECGF to cultured cells and found that the EGF receptor becomes activated, S-phase was induced, doubling time decreased, and in vitro wound healing occurred faster compared to untreated cells. In summary, we demonstrate that ECGF can act as a mitogen in a similar manner as VGF.


Assuntos
Vírus da Ectromelia/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Mitógenos/metabolismo , Proteínas Virais/metabolismo , Animais , Divisão Celular , Linhagem Celular , Movimento Celular , Fator de Crescimento Epidérmico/química , Glicosilação , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Ligação Proteica , Fase S , Transdução de Sinais , Vaccinia virus/metabolismo , Proteínas Virais/química , Cicatrização
11.
Cytometry A ; 73(11): 1050-7, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18615597

RESUMO

Perforin and granzymes work synergistically to induce apoptosis in target cells recognized by cytotoxic T lymphocytes. While perforin is readily detectable by flow cytometry in resting CD8 T cells, upregulation of perforin in activated cells is thought to require proliferation. However, perforin undergoes numerous conformational changes during its maturation, which may affect the ability of conventional antibodies to recognize newly synthesized perforin. Polychromatic flow cytometry was used to detect perforin and cytokine production following stimulation of ex vivo human CD8 T cells. Two different anti-perforin antibodies, clones B-D48 and deltaG9, were used to discriminate various forms of perforin after cellular activation. We provide evidence for the rapid upregulation of perforin protein, which may contribute to the ability of CD8 T cells to kill multiple targets over time. The deltaG9 clone recognizes the granule-associated conformation of perforin, while the B-D48 clone is able to detect perforin in multiple forms. Finally, we show there is variability in the ability of CD8 T cells to upregulate perforin. Human CD8 T cells are capable of new perforin production immediately following activation. This work defines a novel flow cytometric procedure that can be used to more completely assess the cytotoxic capacity of human CD8 T cells.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Citometria de Fluxo/métodos , Perforina/genética , Regulação para Cima/genética , Células Clonais , Granzimas/genética , Granzimas/metabolismo , Humanos , Cinética , Ativação Linfocitária , Perforina/química , Conformação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coloração e Rotulagem
12.
Cancer Immunol Res ; 6(5): 509-516, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29615399

RESUMO

One major hurdle to the success of adoptive T-cell therapy is the identification of antigens that permit effective targeting of tumors in the absence of toxicities to essential organs. Previous work has demonstrated that T cells engineered to express chimeric antigen receptors (CAR-T cells) targeting the murine homolog of the colorectal cancer antigen GUCY2C treat established colorectal cancer metastases, without toxicity to the normal GUCY2C-expressing intestinal epithelium, reflecting structural compartmentalization of endogenous GUCY2C to apical membranes comprising the intestinal lumen. Here, we examined the utility of a human-specific, GUCY2C-directed single-chain variable fragment as the basis for a CAR construct targeting human GUCY2C-expressing metastases. Human GUCY2C-targeted murine CAR-T cells promoted antigen-dependent T-cell activation quantified by activation marker upregulation, cytokine production, and killing of GUCY2C-expressing, but not GUCY2C-deficient, cancer cells in vitro GUCY2C CAR-T cells provided long-term protection against lung metastases of murine colorectal cancer cells engineered to express human GUCY2C in a syngeneic mouse model. GUCY2C murine CAR-T cells recognized and killed human colorectal cancer cells endogenously expressing GUCY2C, providing durable survival in a human xenograft model in immunodeficient mice. Thus, we have identified a human GUCY2C-specific CAR-T cell therapy approach that may be developed for the treatment of GUCY2C-expressing metastatic colorectal cancer. Cancer Immunol Res; 6(5); 509-16. ©2018 AACR.


Assuntos
Neoplasias Colorretais/terapia , Citotoxicidade Imunológica , Imunoterapia Adotiva/métodos , Neoplasias Pulmonares/prevenção & controle , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Enterotoxina , Linfócitos T/transplante , Animais , Células Cultivadas , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Citotoxicidade Imunológica/genética , Citotoxicidade Imunológica/imunologia , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Metástase Neoplásica , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Enterotoxina/genética , Receptores de Enterotoxina/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Virology ; 518: 335-348, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29602068

RESUMO

All known orthopoxviruses, including ectromelia virus (ECTV), contain a gene in the E3L family. The protein product of this gene, E3, is a double-stranded RNA-binding protein. It can impact host range and is used by orthopoxviruses to combat cellular defense pathways, such as PKR and RNase L. In this work, we constructed an ECTV mutant with a targeted disruption of the E3L open reading frame (ECTVΔE3L). Infection with this virus resulted in an abortive replication cycle in all cell lines tested. We detected limited transcription of late genes but no significant translation of these mRNAs. Notably, the replication defects of ECTVΔE3L were rescued in human and mouse cells lacking PKR. ECTVΔE3L was nonpathogenic in BALB/c mice, a strain susceptible to lethal mousepox disease. However, infection with ECTVΔE3L induced protective immunity upon subsequent challenge with wild-type virus. In summary, E3L is an essential gene for ECTV.


Assuntos
Vírus da Ectromelia/imunologia , Vírus da Ectromelia/fisiologia , Ectromelia Infecciosa/prevenção & controle , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vacinas Virais/imunologia , Replicação Viral , Animais , Linhagem Celular , Vírus da Ectromelia/genética , Vírus da Ectromelia/patogenicidade , Técnicas de Inativação de Genes , Humanos , Camundongos Endogâmicos BALB C , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
14.
Virology ; 509: 98-111, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28628829

RESUMO

Most orthopoxviruses, including vaccinia virus (VACV), contain genes in the E3L and K3L families. The protein products of these genes have been shown to combat PKR, a host defense pathway. Interestingly, ectromelia virus (ECTV) contains an E3L ortholog but does not possess an intact K3L gene. Here, we gained insight into how ECTV can still efficiently evade PKR despite lacking K3L. Relative to VACV, we found that ECTV-infected BS-C-1 cells accumulated considerably less double-stranded (ds) RNA, which was due to lower mRNA levels and less transcriptional read-through of some genes by ECTV. The abundance of dsRNA in VACV-infected cells, detected using a monoclonal antibody, was able to activate the RNase L pathway at late time points post-infection. Historically, the study of transcription by orthopoxviruses has largely focused on VACV as a model. Our data suggest that there could be more to learn by studying other members of this genus.


Assuntos
Vírus da Ectromelia/fisiologia , RNA de Cadeia Dupla/metabolismo , Vaccinia virus/fisiologia , Replicação Viral , Animais , Linhagem Celular , Chlorocebus aethiops , Células Epiteliais/virologia , Evasão da Resposta Imune , RNA de Cadeia Dupla/imunologia , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Transcrição Gênica , eIF-2 Quinase/antagonistas & inibidores
15.
PLoS One ; 10(3): e0119189, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25734776

RESUMO

As a group, poxviruses have been shown to infect a wide variety of animal species. However, there is individual variability in the range of species able to be productively infected. In this study, we observed that ectromelia virus (ECTV) does not replicate efficiently in cultured rabbit RK13 cells. Conversely, vaccinia virus (VACV) replicates well in these cells. Upon infection of RK13 cells, the replication cycle of ECTV is abortive in nature, resulting in a greatly reduced ability to spread among cells in culture. We observed ample levels of early gene expression but reduced detection of virus factories and severely blunted production of enveloped virus at the cell surface. This work focused on two important host range genes, named E3L and K3L, in VACV. Both VACV and ECTV express a functional protein product from the E3L gene, but only VACV contains an intact K3L gene. To better understand the discrepancy in replication capacity of these viruses, we examined the ability of ECTV to replicate in wild-type RK13 cells compared to cells that constitutively express E3 and K3 from VACV. The role these proteins play in the ability of VACV to replicate in RK13 cells was also analyzed to determine their individual contribution to viral replication and PKR activation. Since E3L and K3L are two relevant host range genes, we hypothesized that expression of one or both of them may have a positive impact on the ability of ECTV to replicate in RK13 cells. Using various methods to assess virus growth, we did not detect any significant differences with respect to the replication of ECTV between wild-type RK13 compared to versions of this cell line that stably expressed VACV E3 alone or in combination with K3. Therefore, there remain unanswered questions related to the factors that limit the host range of ECTV.


Assuntos
Vírus da Ectromelia/genética , Regulação Viral da Expressão Gênica , Proteínas de Ligação a RNA/genética , Vaccinia virus/genética , Proteínas Virais/genética , Animais , Linhagem Celular , Expressão Ectópica do Gene , Células Epiteliais/patologia , Células Epiteliais/virologia , Especificidade de Hospedeiro , Rim/patologia , Rim/virologia , Camundongos , Proteínas de Ligação a RNA/metabolismo , Coelhos , Vaccinia virus/patogenicidade , Proteínas Virais/metabolismo , Replicação Viral
16.
Curr Opin HIV AIDS ; 6(3): 169-73, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21399496

RESUMO

PURPOSE OF REVIEW: Over the past 2 years, a clearer picture has emerged regarding the properties of HIV-specific CD8+ T cells associated with immunologic control of HIV replication. These properties represent a potential mechanism by which rare patients might control HIV replication in the absence of antiretroviral therapy. This review addresses the background and recent findings that have lead to our current understanding of these mechanism(s). RECENT FINDINGS: Patients with immunologic control of HIV are not distinguished by targeted specificities, or greater numbers or breadth of their HIV-specific CD8+ T-cell response. For this reason, recent work has focused greater attention on qualitative features of this response. The qualitative features most closely associated with immunologic control of HIV are related to the granule-exocytosis-mediated elimination of HIV-infected CD4 T cells. The ability of HIV-specific CD8+ T cells to increase their contents of proteins known to mediate cytotoxicity, such as granzyme B and perforin, appears to be a critical means by which HIV-specific cytotoxic capacity is regulated. SUMMARY: Investigation from multiple groups has now focused upon HIV-specific CD8+ T-cell granule-exocytosis-mediated cytotoxicity as a correlate of immunologic control of HIV. In the near future, a more detailed understanding of the qualities associated with immunologic control may provide critical insights regarding the necessary features of a response that should be stimulated by immunotherapies or T-cell-based vaccines.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , Sobreviventes de Longo Prazo ao HIV , HIV-1/imunologia , Linfócitos T Citotóxicos/imunologia , Humanos , Viremia/imunologia , Viremia/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa