Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(18): 11210-11219, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32806887

RESUMO

Although precipitation is considered to be the most important diffuse source of trifluoroacetate (TFA) to the nonmarine environment, information regarding the wet deposition of TFA as well as general data on the spatial and temporal variations in TFA concentration in precipitation is scarce. This is the first study to provide a comprehensive overview of the occurrence of TFA in precipitation by a systematic and nation-wide field monitoring campaign. In total, 1187 precipitation samples, which were collected over the course of 12 consecutive months at eight locations across Germany, were analyzed. The median, the estimated average, and the precipitation-weighted average TFA concentration of all analyzed wet deposition samples were 0.210, 0.703, and 0.335 µg/L, respectively. For Germany, an annual wet deposition flux of 190 µg/m2 or approximately 68 t was calculated for the sampling period from February 2018 to January 2019. The campaign revealed a pronounced seasonality of the TFA concentration and wet deposition flux of collected samples. Correlation analysis suggested an enhanced transformation of TFA precursors in the troposphere in the summertime due to higher concentrations of photochemically generated oxidants such as hydroxyl radicals, ultimately leading to an enhanced atmospheric deposition of TFA during summer.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Benchmarking , Monitoramento Ambiental , Alemanha , Chuva , Ácido Trifluoracético
2.
PLoS One ; 8(7): e67909, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894290

RESUMO

Future climate change is predicted to advance faster than the postglacial warming. Migration may therefore become a key driver for future development of biodiversity and ecosystem functioning. For 140 European plant species we computed past range shifts since the last glacial maximum and future range shifts for a variety of Intergovernmental Panel on Climate Change (IPCC) scenarios and global circulation models (GCMs). Range shift rates were estimated by means of species distribution modelling (SDM). With process-based seed dispersal models we estimated species-specific migration rates for 27 dispersal modes addressing dispersal by wind (anemochory) for different wind conditions, as well as dispersal by mammals (dispersal on animal's coat - epizoochory and dispersal by animals after feeding and digestion - endozoochory) considering different animal species. Our process-based modelled migration rates generally exceeded the postglacial range shift rates indicating that the process-based models we used are capable of predicting migration rates that are in accordance with realized past migration. For most of the considered species, the modelled migration rates were considerably lower than the expected future climate change induced range shift rates. This implies that most plant species will not entirely be able to follow future climate-change-induced range shifts due to dispersal limitation. Animals with large day- and home-ranges are highly important for achieving high migration rates for many plant species, whereas anemochory is relevant for only few species.


Assuntos
Mudança Climática , Clima , Plantas , Animais , Dinâmica Populacional , Dispersão de Sementes/fisiologia , Vento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa