Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mikrochim Acta ; 189(9): 364, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36045180

RESUMO

3D straw-sheaf-like cobalt oxide (SS-Co3O4) was prepared via the hydrothermal method and inert gas calcination of precursors without the assistance of any template or surfactant. It was composed of numerous nanoneedles with a length of ~ 8 µm and a diameter of ~ 30 nm strongly tied in the center. The SS-Co3O4 exhibited high crystallinity, a large surface area (39.01 m2.g-1), a smaller pore size (6 nm), and lower charge transfer resistance (Rct = 9.35 Ω) at the electrode/electrolyte interface. A non-enzymatic glucose oxidizing electrode fabricated with SS-Co3O4 showed a high sensitivity (669 µA.mM-1.cm-2), wide linear range (0.04-4.85 mM), low limit of detection (0.31 µM), good selectivity, fast response time (5 s), and high reproducibility with a relative standard deviation of 2.25%. In addition, its robust structure demonstrated excellent electrochemical stability by retaining 83.8% of the initial sensitivity when its current density vs. time response was measured for 75 min in bare electrolytes prior to the glucose-sensing test. Furthermore, it demonstrated excellent repeatability performance by retaining 87.0% of the initial sensitivity when a single electrode was tested for 4 cycles. The proposed robust structured 3D SS-Co3O4 electrode successfully responds to the content of glucose in human saliva, which substantially proves its suitability in practical application. The synthesis technique is advantageous to prepare other metal oxides with interesting morphology and robust structure for the development of more reliable non-enzymatic glucometers and other electrochemical devices.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Cobalto , Eletrodos , Glucose/química , Humanos , Óxidos , Reprodutibilidade dos Testes
2.
Nanomicro Lett ; 16(1): 84, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214765

RESUMO

In this study, precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties, environmental stability, and gas-sensing performance. Utilizing a hybrid method involving high-pressure processing, stirring, and immiscible solutions, sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer. Functionalization control is achieved by defunctionalizing MXene at 650 °C under vacuum and H2 gas in a CVD furnace, followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD. Notably, the introduction of iodine, which has a larger atomic size, lower electronegativity, reduce shielding effect, and lower hydrophilicity (contact angle: 99°), profoundly affecting MXene. It improves the surface area (36.2 cm2 g-1), oxidation stability in aqueous/ambient environments (21 days/80 days), and film conductivity (749 S m-1). Additionally, it significantly enhances the gas-sensing performance, including the sensitivity (0.1119 Ω ppm-1), response (0.2% and 23% to 50 ppb and 200 ppm NO2), and response/recovery times (90/100 s). The reduced shielding effect of the -I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2. This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies.

3.
Nanomaterials (Basel) ; 14(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38786782

RESUMO

Binary transition metal oxide complexes (BTMOCs) in three-dimensional (3D) layered structures show great promise as electrodes for supercapacitors (SCs) due to their diverse oxidation states, which contribute to high specific capacitance. However, the synthesis of BTMOCs with 3D structures remains challenging yet crucial for their application. In this study, we present a novel approach utilizing a single-step hydrothermal technique to fabricate flower-shaped microspheres composed of a NiCo-based complex. Each microsphere consists of nanosheets with a mesoporous structure, enhancing the specific surface area to 23.66 m2 g-1 and facilitating efficient redox reactions. When employed as the working electrode for supercapacitors, the composite exhibits remarkable specific capacitance, achieving 888.8 F g-1 at 1 A g-1. Furthermore, it demonstrates notable electrochemical stability, retaining 52.08% capacitance after 10,000 cycles, and offers a high-power density of 225 W·kg-1, along with an energy density of 25 Wh·kg-1, showcasing its potential for energy storage applications. Additionally, an aqueous asymmetric supercapacitor (ASC) was assembled using NiCo microspheres-based complex and activated carbon (AC). Remarkably, the NiCo microspheres complex/AC configuration delivers a high specific capacitance of 250 F g-1 at 1 A g-1, with a high energy density of 88 Wh kg-1, for a power density of 800 W kg-1. The ASC also exhibits excellent long-term cyclability with 69% retention over 10,000 charge-discharge cycles. Furthermore, a series of two ASC devices demonstrated the capability to power commercial blue LEDs for a duration of at least 40 s. The simplicity of the synthesis process and the exceptional performance exhibited by the developed electrode materials hold considerable promise for applications in energy storage.

4.
Nano Converg ; 9(1): 14, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35316419

RESUMO

Herein, ZnO nanorods were doped with Co and decorated with CoO clusters through an in situ technique to create a CoO/Co-doped ZnO (CO/CZO) heterostructure at low temperatures (150 °C) on a flexible PET substrate. In the CO/CZO heterostructure, the Co dopant has a low energy barrier to substitute Zn atoms and adsorb over oxygen atoms and their vacancies. Therefore, it decreased the charge density (ND = 2.64 × 1019 cm-3) on non-active sites of ZnO and lowered the charge transfer resistance (317 Ω) at Co-doped-ZnO/electrolyte interface by suppressing the native defects and reducing the Schottky barrier height (- 0.35 eV), respectively. Furthermore, CoO clusters induced a p-n heterostructure with Co-doped ZnO, prevented corrosion, increased the active sites for analyte absorption, and increased the ultimate tensile strength (4.85 N m-2). These characteristics enabled the CO/CZO heterostructure to work as a highly sensitive, chemically stable, and flexible pH and glucose oxidation electrode. Therefore, CO/CZO heterostructure was explored for pH monitoring in human fluids and fruit juices, demonstrating a near-Nernst-limit pH sensitivity (52 mV/pH) and fast response time (19 s) in each human fluid and fruit juice. Also, it demonstrated high sensitivity (4656 µM mM-1 cm-2), low limit of detection (0.15 µM), a broad linear range (0.04 mM to 8.85 mM) and good anti-interference capacity towards glucose-sensing. Moreover, it demonstrated excellent flexibility performances, retained 53% and 69% sensitivity of the initial value for pH and glucose sensors, respectively, after 500 bending, stretching, and warping cycles.

5.
Nanomicro Lett ; 12(1): 25, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34138061

RESUMO

Supercapacitors have attracted much attention in the field of electrochemical energy storage. However, material preparation, stability, performance as well as power density limit their applications in many fields. Herein, a sponge-like red phosphorus@graphene (rP@rGO) negative electrode and a Ni2P positive electrode were prepared using a simple one-step method. Both electrodes showed excellent performances (294 F g-1 and 1526.6 F g-1 for rP@rGO and Ni2P, respectively), which seem to be the highest among all rP@rGO- and Ni2P-based electrodes reported so far. The asymmetric solid-state supercapacitor was assembled by sandwiching a gel electrolyte-soaked cellulose paper between rP@rGO and Ni2P as the negative and positive electrodes. Compared to other asymmetric devices, the device, which attained a high operating window of up to 1.6 V, showed high energy and power density values of 41.66 and 1200 W kg-1, respectively. It also has an excellent cyclic stability up to 88% after various consecutive charge/discharge tests. Additionally, the device could power commercial light emitting diodes and fans for 30 s. So, the ease of the synthesis method and excellent performance of the prepared electrode materials mat have significant potential for energy storage applications .

6.
RSC Adv ; 8(30): 16927-16936, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35540558

RESUMO

Zinc acetate is recrystallized as lumber-shaped tetragonal rods by a novel recrystallization technique. Subsequently, the recrystallized zinc acetate is converted into ZnO nanorods in a glass vial by the simplest and cheapest method without utilizing any expensive instrumentation. Carbon is doped in ZnO nanorods during the preparation ZnO nanorods without any extra steps, chemicals, or effort. The carbon-doped ZnO nanorods can be dispersed in a solvent at very high concentrations and are also stable for a very long time, which are comparatively higher than those of the other existing ZnO nanoparticles. The higher dispersion concentration and higher stability of ZnO nanoparticles are explained by a scheme that demonstrates the suspending mechanism of the ZnO nanoparticles at higher concentrations with higher stabilities in a solvent through the anchoring groups of carbon. No materials are used for surface modification; no surface coatings, ionic materials, or pH controlling materials are used to increase the dispersion concentration and stability. This is the first observation of the doped carbon playing a significant role in the dispersion of ZnO nanoparticles at higher concentrations by withholding them in the solvent. Therefore, doped carbon at the surface of ZnO nanoparticles prevents the self-aggregation of ZnO nanoparticles in the solution phase by interfacial barrier layers among ZnO nanorods and interfacial interactive layer between ZnO nanorod and solvent.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa