Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nature ; 585(7826): 551-556, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908312

RESUMO

Increased efforts are required to prevent further losses to terrestrial biodiversity and the ecosystem services that it  provides1,2. Ambitious targets have been proposed, such as reversing the declining trends in biodiversity3; however, just feeding the growing human population will make this a challenge4. Here we use an ensemble of land-use and biodiversity models to assess whether-and how-humanity can reverse the declines in terrestrial biodiversity caused by habitat conversion, which is a major threat to biodiversity5. We show that immediate efforts, consistent with the broader sustainability agenda but of unprecedented ambition and coordination, could enable the provision of food for the growing human population while reversing the global terrestrial biodiversity trends caused by habitat conversion. If we decide to increase the extent of land under conservation management, restore degraded land and generalize landscape-level conservation planning, biodiversity trends from habitat conversion could become positive by the mid-twenty-first century on average across models (confidence interval, 2042-2061), but this was not the case for all models. Food prices could increase and, on average across models, almost half (confidence interval, 34-50%) of the future biodiversity losses could not be avoided. However, additionally tackling the drivers of land-use change could avoid conflict with affordable food provision and reduces the environmental effects of the food-provision system. Through further sustainable intensification and trade, reduced food waste and more plant-based human diets, more than two thirds of future biodiversity losses are avoided and the biodiversity trends from habitat conversion are reversed by 2050 for almost all of the models. Although limiting further loss will remain challenging in several biodiversity-rich regions, and other threats-such as climate change-must be addressed to truly reverse the declines in biodiversity, our results show that ambitious conservation efforts and food system transformation are central to an effective post-2020 biodiversity strategy.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Política Ambiental/tendências , Atividades Humanas/tendências , Dieta , Dieta Vegetariana/tendências , Abastecimento de Alimentos , Humanos , Desenvolvimento Sustentável/tendências
2.
J Anim Ecol ; 93(4): 488-500, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38459628

RESUMO

As animal home range size (HRS) provides valuable information for species conservation, it is important to understand the driving factors of HRS variation. It is widely known that differences in species traits (e.g. body mass) are major contributors to variation in mammal HRS. However, most studies examining how environmental variation explains mammal HRS variation have been limited to a few species, or only included a single (mean) HRS estimate for the majority of species, neglecting intraspecific HRS variation. Additionally, most studies examining environmental drivers of HRS variation included only terrestrial species, neglecting marine species. Using a novel dataset of 2800 HRS estimates from 586 terrestrial and 27 marine mammal species, we quantified the relationships between HRS and environmental variables, accounting for species traits. Our results indicate that terrestrial mammal HRS was on average 5.3 times larger in areas with low human disturbance (human footprint index [HFI] = 0), compared to areas with maximum human disturbance (HFI = 50). Similarly, HRS was on average 5.4 times larger in areas with low annual mean productivity (NDVI = 0), compared to areas with high productivity (NDVI = 1). In addition, HRS increased by a factor of 1.9 on average from low to high seasonality in productivity (standard deviation (SD) of monthly NDVI from 0 to 0.36). Of these environmental variables, human disturbance and annual mean productivity explained a larger proportion of HRS variance than seasonality in productivity. Marine mammal HRS decreased, on average, by a factor of 3.7 per 10°C decline in annual mean sea surface temperature (SST), and increased by a factor of 1.5 per 1°C increase in SST seasonality (SD of monthly values). Annual mean SST explained more variance in HRS than SST seasonality. Due to the small sample size, caution should be taken when interpreting the marine mammal results. Our results indicate that environmental variation is relevant for HRS and that future environmental changes might alter the HRS of individuals, with potential consequences for ecosystem functioning and the effectiveness of conservation actions.


Assuntos
Ecossistema , Comportamento de Retorno ao Território Vital , Animais , Mamíferos , Temperatura
3.
Conserv Biol ; 38(1): e14152, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37551763

RESUMO

New Guinea is one of the last regions in the world with vast pristine areas and is home to many endemic species. However, extensive road development plans threaten the island's biodiversity. We quantified habitat fragmentation due to existing and planned roads for 139 terrestrial mammal species in New Guinea. For each species, we calculated the equivalent connected area (ECA) of habitat, a metric that takes into account the area and connectivity of habitat patches in 3 situations: no roads (baseline situation), existing roads (current), and existing and planned roads combined (future). We assessed the effect of roads as the proportion of the ECA remaining in the current and future situations relative to the baseline. To examine whether there were patterns in these relative ECA values, we fitted beta-regression models relating these values to 4 species characteristics: taxonomic order, body mass, diet, and International Union for the Conservation of Nature Red List status. On average across species, current ECA was 89% (SD 12) of baseline ECA. Shawmayer's coccymys (Coccymys shawmayeri) had the lowest amount of current ECA relative to the baseline (53%). In the future situation, the average remaining ECA was 71% (SD 20) of baseline ECA. Future remaining ECA was below 50% of the baseline for 28 species. The montane soft-furred paramelomys (Paramelomys mollis) had the lowest future ECA relative to the baseline (36%). In general, currently nonthreatened carnivorous species with a large body mass had the greatest reductions of ECA in the future situation. In conclusion, future road development plans imply extensive additional habitat fragmentation for a large number of terrestrial mammal species in New Guinea. It is therefore important to limit the impact of planned roads, for example, by reconsidering the location of planned roads that intersect habitat of the most threatened species, or by the implementation of mitigation measures such as underpasses.


Impacto de las carreteras planeadas y existentes sobre el hábitat de mamíferos terrestres en Nueva Guinea Resumen Nueva Guinea es una de las últimas regiones del mundo con zonas vírgenes extensas que alberga muchas especies endémicas. Sin embargo, los planes extensivos de desarrollo de carreteras amenazan la biodiversidad de la isla. Cuantificamos la fragmentación del hábitat causada por las carreteras existentes y previstas para 139 especies de mamíferos terrestres de Nueva Guinea. Para cada especie, calculamos el área conectada equivalente (ACE) del hábitat, una medida que considera el área y la conectividad de los fragmentos de hábitat en tres situaciones: sin carreteras (situación de referencia), carreteras existentes (actual) y la combinación de carreteras existentes y previstas (futuro). Evaluamos el efecto de las carreteras como la proporción de ACE que quedaba en las situaciones actual y futura en relación con la situación de referencia. Para examinar si existían patrones en estos valores relativos de ECA, ajustamos modelos de regresión beta relacionando estos valores con cuatro características de las especies: orden taxonómico, masa corporal, dieta y estado en la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza. En promedio para todas las especies, la ACE actual fue 89% (DE 12) de la ACE basal. La especie Coccymys shawmayeri presentó la menor cantidad de ACE actual en relación con la base de referencia (53%). En la situación futura, la media de ACE restante fue del 71% (DE 20) de la ACE de referencia. La ACE restante futura fue inferior al 50% de la línea de base para 28 especies. La especie Paramelomys mollis tuvo la ACE futura más baja en relación con la línea base (36%). En general, las especies carnívoras que no están amenazadas actualmente y tienen una masa corporal grande tuvieron la mayor reducción de ACE en la situación futura. Para concluir, la futura construcción de carreteras implica una extensa fragmentación de hábitat adicional para un gran número de especies de mamíferos terrestres en Nueva Guinea. Por esto es importante limitar el impacto de las carreteras planeadas, por ejemplo, reconsiderando la ubicación de las carreteras que cruzan el hábitat de las especies más amenazadas o implementando medidas de mitigación como los pasos subterráneos.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Nova Guiné , Mamíferos , Biodiversidade
4.
Glob Chang Biol ; 29(22): 6234-6247, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37665234

RESUMO

Land use is a major cause of biodiversity decline worldwide. Agricultural and forestry diversification measures, such as the inclusion of natural elements or diversified crop types, may reduce impacts on biodiversity. However, the extent to which such measures may compensate for the negative impacts of land use remains unknown. To fill that gap, we synthesised data from 99 studies that recorded mammal populations or assemblages in natural reference sites and in cropland and forest plantations, with or without diversification measures. We quantified the responses to diversification measures based on individual species abundance, species richness and assemblage intactness as quantified by the mean species abundance indicator. In cropland with natural elements, mammal species abundance and richness were, on average, similar to natural conditions, while in cropland without natural elements they were reduced by 28% and 34%, respectively. We found that mammal species richness was comparable between diversified forest plantations and natural reference sites, and 32% lower in plantations without natural elements. In both cropland and plantations, assemblage intactness was reduced compared with natural reference conditions, but the reduction was smaller if diversification measures were in place. In addition, we found that responses to land use were modified by species traits and environmental context. While habitat specialist populations were reduced in cropland without diversification and in forest plantations, habitat generalists benefited. Furthermore, assemblages were impacted more by land use in tropical regions and landscapes containing a larger share of (semi)natural habitat compared with temperate regions and more converted landscapes. Given that mammal assemblage intactness is reduced also when diversification measures are in place, special attention should be directed to species that suffer from land use impacts. That said, our results suggest potential for reconciling land use and mammal conservation, provided that the diversification measures do not compromise yield.

5.
Glob Ecol Biogeogr ; 31(8): 1526-1541, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36247232

RESUMO

Aim: Macroecological studies that require habitat suitability data for many species often derive this information from expert opinion. However, expert-based information is inherently subjective and thus prone to errors. The increasing availability of GPS tracking data offers opportunities to evaluate and supplement expert-based information with detailed empirical evidence. Here, we compared expert-based habitat suitability information from the International Union for Conservation of Nature (IUCN) with habitat suitability information derived from GPS-tracking data of 1,498 individuals from 49 mammal species. Location: Worldwide. Time period: 1998-2021. Major taxa studied: Forty-nine terrestrial mammal species. Methods: Using GPS data, we estimated two measures of habitat suitability for each individual animal: proportional habitat use (proportion of GPS locations within a habitat type), and selection ratio (habitat use relative to its availability). For each individual we then evaluated whether the GPS-based habitat suitability measures were in agreement with the IUCN data. To that end, we calculated the probability that the ranking of empirical habitat suitability measures was in agreement with IUCN's classification into suitable, marginal and unsuitable habitat types. Results: IUCN habitat suitability data were in accordance with the GPS data (> 95% probability of agreement) for 33 out of 49 species based on proportional habitat use estimates and for 25 out of 49 species based on selection ratios. In addition, 37 and 34 species had a > 50% probability of agreement based on proportional habitat use and selection ratios, respectively. Main conclusions: We show how GPS-tracking data can be used to evaluate IUCN habitat suitability data. Our findings indicate that for the majority of species included in this study, it is appropriate to use IUCN habitat suitability data in macroecological studies. Furthermore, we show that GPS-tracking data can be used to identify and prioritize species and habitat types for re-evaluation of IUCN habitat suitability data.

6.
Conserv Biol ; 36(5): e13942, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35603483

RESUMO

Biodiversity is severely threatened by habitat destruction. As a consequence of habitat destruction, the remaining habitat becomes more fragmented. This results in time-lagged population extirpations in remaining fragments when these are too small to support populations in the long term. If these time-lagged effects are ignored, the long-term impacts of habitat loss and fragmentation will be underestimated. We quantified the magnitude of time-lagged effects of habitat fragmentation for 157 nonvolant terrestrial mammal species in Madagascar, one of the biodiversity hotspots with the highest rates of habitat loss and fragmentation. We refined species' geographic ranges based on habitat preferences and elevation limits and then estimated which habitat fragments were too small to support a population for at least 100 years given stochastic population fluctuations. We also evaluated whether time-lagged effects would change the threat status of species according to the International Union for the Conservation of Nature (IUCN) Red List assessment framework. We used allometric relationships to obtain the population parameters required to simulate the population dynamics of each species, and we quantified the consequences of uncertainty in these parameter estimates by repeating the analyses with a range of plausible parameter values. Based on the median outcomes, we found that for 34 species (22% of the 157 species) at least 10% of their current habitat contained unviable populations. Eight species (5%) had a higher threat status when accounting for time-lagged effects. Based on 0.95-quantile values, following a precautionary principle, for 108 species (69%) at least 10% of their habitat contained unviable populations, and 51 species (32%) had a higher threat status. Our results highlight the need to preserve continuous habitat and improve connectivity between habitat fragments. Moreover, our findings may help to identify species for which time-lagged effects are most severe and which may thus benefit the most from conservation actions.


La biodiversidad se encuentra seriamente amenazada por la destrucción del hábitat. Como consecuencia de esta destrucción, el hábitat remanente se vuelve más fragmentado. Esto resulta en extirpaciones poblacionales retardadas dentro de los fragmentos restantes cuando éstos son muy pequeños para mantener a las poblaciones a largo plazo. Si se ignoran estos efectos retardados, se subestimarán los impactos a largo plazo de la pérdida del hábitat y la fragmentación. Cuantificamos la magnitud de los efectos retardados de la fragmentación del hábitat para 157 especies de mamíferos terrestres no voladores en Madagascar, uno de los puntos calientes de biodiversidad con las tasas más elevadas de pérdida del hábitat y fragmentación. Depuramos las extensiones geográficas de las especies con base en las preferencias de hábitat y los límites de elevación y después estimamos cuáles fragmentos de hábitat eran muy pequeños para mantener una población durante al menos cien años dadas las fluctuaciones estocásticas de las poblaciones. También analizamos si los efectos retardados cambiarían el estado de amenaza de la especie de acuerdo con el programa de evaluación de la Lista Roja de la UICN. Usamos relaciones alométricas para obtener los parámetros poblacionales requeridos para simular las dinámicas poblacionales de cada especie y cuantificamos las consecuencias de la incertidumbre en estos parámetros estimados mediante análisis repetidos con una gama de valores plausibles de los parámetros. Con base en los resultados promedio, descubrimos que para 34 especies (22% de las 157 especies) al menos el 10% de su hábitat actual tiene poblaciones inviables. Ocho especies (5%) cambiaron a un estado más elevado de amenaza cuando se consideraron los efectos retardados. Con base en los valores del centil 0.95, adherido a un principio precautorio, para 108 especies (32%) al menos el 10% de su hábitat tiene poblaciones inviables y 51 especies (32%) cambiaron negativamente su estado de amenaza. Nuestros resultados resaltan la necesidad de conservar la continuidad de los hábitats y mejorar la conectividad entre los fragmentos. Además, nuestros hallazgos pueden ayudar a identificar especies para las cuales los efectos retardados son más serios y que podrían beneficiarse más con las acciones de conservación.


Assuntos
Conservação dos Recursos Naturais , Extinção Biológica , Animais , Biodiversidade , Ecossistema , Espécies em Perigo de Extinção , Madagáscar , Mamíferos
7.
Glob Chang Biol ; 27(20): 4995-5007, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34214237

RESUMO

As a source of emerging infectious diseases, wildlife assemblages (and related spatial patterns) must be quantitatively assessed to help identify high-risk locations. Previous assessments have largely focussed on the distributions of individual species; however, transmission dynamics are expected to depend on assemblage composition. Moreover, disease-diversity relationships have mainly been studied in the context of species loss, but assemblage composition and disease risk (e.g. infection prevalence in wildlife assemblages) can change without extinction. Based on the predicted distributions and abundances of 4466 mammal species, we estimated global patterns of disease risk through the calculation of the community-level basic reproductive ratio R0, an index of invasion potential, persistence, and maximum prevalence of a pathogen in a wildlife assemblage. For density-dependent diseases, we found that, in addition to tropical areas which are commonly viewed as infectious disease hotspots, northern temperate latitudes included high-risk areas. We also forecasted the effects of climate change and habitat loss from 2015 to 2035. Over this period, many local assemblages showed no net loss of species richness, but the assemblage composition (i.e. the mix of species and their abundances) changed considerably. Simultaneously, most areas experienced a decreased risk of density-dependent diseases but an increased risk of frequency-dependent diseases. We further explored the factors driving these changes in disease risk. Our results suggest that biodiversity and changes therein jointly influence disease risk. Understanding these changes and their drivers and ultimately identifying emerging infectious disease hotspots can help health officials prioritize resource distribution.


Assuntos
Doenças Transmissíveis Emergentes , Animais , Biodiversidade , Mudança Climática , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/veterinária , Ecossistema , Mamíferos
8.
Glob Chang Biol ; 26(2): 760-771, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31680366

RESUMO

Scenario-based biodiversity modelling is a powerful approach to evaluate how possible future socio-economic developments may affect biodiversity. Here, we evaluated the changes in terrestrial biodiversity intactness, expressed by the mean species abundance (MSA) metric, resulting from three of the shared socio-economic pathways (SSPs) combined with different levels of climate change (according to representative concentration pathways [RCPs]): a future oriented towards sustainability (SSP1xRCP2.6), a future determined by a politically divided world (SSP3xRCP6.0) and a future with continued global dependency on fossil fuels (SSP5xRCP8.5). To this end, we first updated the GLOBIO model, which now runs at a spatial resolution of 10 arc-seconds (~300 m), contains new modules for downscaling land use and for quantifying impacts of hunting in the tropics, and updated modules to quantify impacts of climate change, land use, habitat fragmentation and nitrogen pollution. We then used the updated model to project terrestrial biodiversity intactness from 2015 to 2050 as a function of land use and climate changes corresponding with the selected scenarios. We estimated a global area-weighted mean MSA of 0.56 for 2015. Biodiversity intactness declined in all three scenarios, yet the decline was smaller in the sustainability scenario (-0.02) than the regional rivalry and fossil-fuelled development scenarios (-0.06 and -0.05 respectively). We further found considerable variation in projected biodiversity change among different world regions, with large future losses particularly for sub-Saharan Africa. In some scenario-region combinations, we projected future biodiversity recovery due to reduced demands for agricultural land, yet this recovery was counteracted by increased impacts of other pressures (notably climate change and road disturbance). Effective measures to halt or reverse the decline of terrestrial biodiversity should not only reduce land demand (e.g. by increasing agricultural productivity and dietary changes) but also focus on reducing or mitigating the impacts of other pressures.


Assuntos
Biodiversidade , Ecossistema , Agricultura , Mudança Climática
9.
Conserv Biol ; 34(5): 1271-1280, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31919881

RESUMO

Land use and hunting are 2 major pressures on biodiversity in the tropics. Yet, their combined impacts have not been systematically quantified at a large scale. We estimated the effects of both pressures on the distributions of 1884 tropical mammal species by integrating species' range maps, detailed land-use maps (1992 and 2015), species-specific habitat preference data, and a hunting pressure model. We further identified areas where the combined impacts were greatest (hotspots) and least (coolspots) to determine priority areas for mitigation or prevention of the pressures. Land use was the main driver of reduced distribution of all mammal species considered. Yet, hunting pressure caused additional reductions in large-bodied species' distributions. Together, land use and hunting reduced distributions of species by 41% (SD 30) on average (year 2015). Overlap between impacts was only 2% on average. Land use contributed more to the loss of distribution (39% on average) than hunting (4% on average). However, hunting reduced the distribution of large mammals by 29% on average; hence, large mammals lost a disproportional amount of area due to the combination of both pressures. Gran Chaco, the Atlantic Forest, and Thailand had high levels of impact across the species (hotspots of area loss). In contrast, the Amazon and Congo Basins, the Guianas, and Borneo had relatively low levels of impact (coolspots of area loss). Overall, hunting pressure and human land use increased from 1992 to 2015 and corresponding losses in distribution increased from 38% to 41% on average across the species. To effectively protect tropical mammals, conservation policies should address both pressures simultaneously because their effects are highly complementary. Our spatially detailed and species-specific results may support future national and global conservation agendas, including the design of post-2020 protected area targets and strategies.


Efectos Combinados del Uso de Suelo y la Caza en la Distribución de los Mamíferos Tropicales Resumen El uso de suelo y la caza son dos de las principales presiones ejercidas sobre la biodiversidad de los trópicos. Aun así, los impactos combinados que generan no han sido cuantificados sistemáticamente a gran escala. Estimamos los efectos de ambas presiones sobre la distribución de 1,884 especies de mamíferos tropicales al integrar mapas de distribución de las especies, mapas detallados del uso de suelo (de 1992 y 2015), datos de preferencia de hábitat específicos por especie y un modelo de presión de caza. Identificamos además las áreas en donde los impactos combinados eran mayores (puntos calientes) y menores (puntos fríos) para determinar las áreas prioritarias para la mitigación o prevención de dichas presiones. El uso de suelo fue el principal conductor de la reducción de la distribución para todas las especies de mamíferos que consideramos. Sin embargo, la presión por caza causó reducciones adicionales en la distribución de especies de gran tamaño. Juntas, el uso de suelo y la caza redujeron la distribución de las especies en un 41% (DS 30) en promedio (año 2015). El solapamiento entre los impactos fue, en promedio, sólo del 2%. El uso de suelo contribuyó más a la pérdida de la distribución (39%, en promedio) que la caza (4%, en promedio). A pesar de esto, en promedio la caza redujo la distribución de los mamíferos de gran tamaño en un 29%; por lo tanto, los grandes mamíferos perdieron una cantidad desproporcionada de área debido a la combinación de ambas presiones. El Gran Chaco, el Bosque Atlántico y Tailandia tuvieron niveles altos de impacto en todas las especies (puntos calientes de pérdida de área). Como contraste, las cuencas del Amazonas y el Congo, las Guayanas y Borneo tuvieron niveles relativamente bajos de impacto (puntos fríos de pérdida de área). En general, las presiones por caza y uso de suelo incrementaron desde 1992 a 2015 y las correspondientes pérdidas de distribución incrementaron de un 38% a un 41% en promedio para todas las especies. Para proteger de forma efectiva a los mamíferos tropicales, las políticas de conservación deberían considerar a ambas presiones de manera simultánea, pues sus efectos son altamente complementarios. Nuestros resultados espacialmente detallados y específicos para cada especie pueden respaldar las futuras agendas de conservación nacionales e internacionales, incluyendo el diseño de las estrategias y los objetivos de las áreas protegidas para después de 2020.


Assuntos
Conservação dos Recursos Naturais , Mamíferos , Animais , Biodiversidade , Bornéu , Congo , Ecossistema , Humanos , Tailândia
10.
Conserv Biol ; 33(5): 1084-1093, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30653250

RESUMO

The IUCN (International Union for Conservation of Nature) Red List categories and criteria are the most widely used framework for assessing the relative extinction risk of species. The criteria are based on quantitative thresholds relating to the size, trends, and structure of species' distributions and populations. However, data on these parameters are sparse and uncertain for many species and unavailable for others, potentially leading to their misclassification or classification as data deficient. We devised an approach that combines data on land-cover change, species-specific habitat preferences, population abundance, and dispersal distance to estimate key parameters (extent of occurrence, maximum area of occupancy, population size and trend, and degree of fragmentation) and hence predict IUCN Red List categories for species. We applied our approach to nonpelagic birds and terrestrial mammals globally (∼15,000 species). The predicted categories were fairly consistent with published IUCN Red List assessments, but more optimistic overall. We predicted 4.2% of species (467 birds and 143 mammals) to be more threatened than currently assessed and 20.2% of data deficient species (10 birds and 114 mammals) to be at risk of extinction. Incorporating the habitat fragmentation subcriterion reduced these predictions 1.5-2.3% and 6.4-14.9% (depending on the quantitative definition of fragmentation) for threatened and data deficient species, respectively, highlighting the need for improved guidance for IUCN Red List assessors on the application of this aspect of the IUCN Red List criteria. Our approach complements traditional methods of estimating parameters for IUCN Red List assessments. Furthermore, it readily provides an early-warning system to identify species potentially warranting changes in their extinction-risk category based on periodic updates of land-cover information. Given our method relies on optimistic assumptions about species distribution and abundance, all species predicted to be more at risk than currently evaluated should be prioritized for reassessment.


Aplicación de Modelos de Hábitat y de Densidad Poblacional a Series de Tiempo de la Cobertura del Suelo para Informar las Valoraciones de la Lista Roja de la UICN Resumen Las categorías y los criterios de la Lista Roja de la UICN (Unión Internacional para la Conservación de la Naturaleza) son el marco de referencia utilizado con mayor frecuencia para valorar el riesgo de extinción relativo de las especies. Los criterios se basan en umbrales cuantitativos relacionados con el tamaño, las tendencias y la estructura de la distribución y las poblaciones de las especies. Sin embargo, los datos sobre estos parámetros son escasos e inciertos para muchas especies y para otras no se encuentran disponibles, lo puede resultar en una clasificación errónea o en que se las clasifique como una especie con deficiencia de datos. Hemos diseñado una estrategia que combina datos sobre el cambio en la cobertura del suelo, las preferencias de hábitat específicas por especie, la abundancia poblacional, y la distancia de dispersión para estimar los parámetros más importantes (extensión de la presencia, área máxima de ocupación, tamaño poblacional, y grado y tendencia de la fragmentación) y así predecir las categorías de la Lista Roja de la UICN para cada especie. Hemos aplicado nuestra estrategia a las aves no pelágicas y a los mamíferos terrestres de todo el mundo (∼15,000 especies). Las categorías pronosticadas fueron bastante consecuentes con las valoraciones publicadas por la Lista Roja de la UICN, aunque en general fueron más optimistas. Pronosticamos que el 4.2% de las especies (467 aves y 143 mamíferos) se encuentran más amenazadas que su valoración actual y el 20.2% de las especies con deficiencia de datos (10 aves y 114 mamíferos) se encuentran en riesgo de extinción. La incorporación del sub-criterio de fragmentación del hábitat redujo estas predicciones en un 1.5 - 2.3% y 6.4 - 14.9% (dependiendo de la definición cuantitativa de la fragmentación) para las especies amenazadas y las que tienen deficiencia de datos, respectivamente, lo que resalta la necesidad de mejorar la aplicación de este sub-criterio por parte de los asesores de la Lista Roja de la UICN. Nuestra estrategia complementa los métodos tradicionales de estimación de parámetros para las valoraciones de la Lista Roja. Además, proporciona un sistema inmediato de alerta temprana basado en actualizaciones periódicas de la información sobre la cobertura del suelo que permite identificar a las especies que, potencialmente, merezcan un cambio en su categoría de riesgo de extinción. Nuestro método está basado en suposiciones optimistas sobre la distribución y la abundancia de las especies, por lo tanto todas las especies que predecimos que tienen una mayor categoría de riesgo que la que reconoce la evaluación actual deberían ser priorizadas para su revaloración.


Assuntos
Espécies em Perigo de Extinção , Extinção Biológica , Animais , Conservação dos Recursos Naturais , Ecossistema , Densidade Demográfica
11.
Ecol Appl ; 28(3): 771-785, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29336512

RESUMO

Environmental pollution is an important driver of biodiversity loss. Yet, to date, the effects of chemical exposure on wildlife populations have been quantified for only a few species, mainly due to a lack of appropriate laboratory data to quantify chemical impacts on vital rates. In this study, we developed a method to quantify the effects of toxicant exposure on wildlife population persistence based on field monitoring data. We established field-based vital-rate-response functions for toxicants, using quantile regression to correct for the influences of confounding factors on the vital rates observed, and combined the response curves with population viability modelling. We then applied the method to quantify the impact of DDE on three bird species: the White-tailed Eagle, Bald Eagle, and Osprey. Population viability was expressed via five population extinction vulnerability metrics: population growth rate (r1 ), critical patch size (CPS), minimum viable population size (MVP), probability of population extirpation (PE), and median time to population extirpation (MTE). We found that past DDE exposure concentrations increased population extirpation vulnerabilities of all three bird species. For example, at DDE concentrations of 25 mg/kg wet mass of egg (the maximum historic exposure concentration reported in literature for the Osprey), r1 became small (White-tailed Eagle and Osprey) or close to zero (Bald Eagle), the CPS increased up to almost the size of Connecticut (White-tailed Eagle and Osprey) or West Virginia (Bald Eagle), the MVP increased up to approximately 90 (White-tailed Eagle and Osprey) or 180 breeding pairs (Bald Eagle), the PE increased up to almost certain extirpation (Bald Eagle) or only slightly elevated levels (White-tailed Eagle and Osprey) and the MTE became within decades (Bald Eagle) or remained longer than a millennium (White-tailed Eagle and Osprey). Our study provides a method to derive species-specific field-based response curves of toxicant exposure, which can be used to assess population extinction vulnerabilities and obtain critical levels of toxicant exposure based on maximum permissible effect levels. This may help conservation managers to better design appropriate habitat restoration and population recovery measures, such as reducing toxicant levels, increasing the area of suitable habitat or reintroducing individuals.


Assuntos
Diclorodifenil Dicloroetileno/toxicidade , Poluentes Ambientais/toxicidade , Extinção Biológica , Modelos Biológicos , Animais , Dinâmica Populacional
12.
Environ Sci Technol ; 52(6): 3716-3726, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29484892

RESUMO

Ecological risks (ERs) of pollutants are typically assessed using species sensitivity distributions (SSDs), based on effect concentrations obtained from bioassays with unknown representativeness for field conditions. Alternatively, monitoring data relating breeding success in bird populations to egg concentrations may be used. In this study, we developed a procedure to derive SSDs for birds based on field data of egg concentrations and reproductive success. As an example, we derived field-based SSDs for p, p'-DDE and polychlorinated biphenyls (PCBs) exposure to birds. These SSDs were used to calculate ERs for these two chemicals in the American Great Lakes and the Arctic. First, we obtained field data of p, p'-DDE and PCBs egg concentrations and reproductive success from the literature. Second, these field data were used to fit exposure-response curves along the upper boundary (right margin) of the response's distribution (95th quantile), also called quantile regression analysis. The upper boundary is used to account for heterogeneity in reproductive success induced by other external factors. Third, the species-specific EC10/50s obtained from the field-based exposure-response curves were used to derive SSDs per chemical. Finally, the SSDs were combined with specific exposure data for both compounds in the two areas to calculate the ER. We found that the ERs of combined exposure to these two chemicals were a factor of 5-35 higher in the Great Lakes compared to Arctic regions. Uncertainty in the species-specific exposure-response curves and related SSDs was mainly caused by the limited number of field exposure-response data for bird species. With sufficient monitoring data, our method can be used to quantify field-based ecological risks for other chemicals, species groups, and regions of interest.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Animais , Regiões Árticas , Aves , Ecologia
13.
Conserv Biol ; 31(2): 385-393, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27677629

RESUMO

Conservation planning and biodiversity assessments need quantitative targets to optimize planning options and assess the adequacy of current species protection. However, targets aiming at persistence require population-specific data, which limit their use in favor of fixed and nonspecific targets, likely leading to unequal distribution of conservation efforts among species. We devised a method to derive equitable population targets; that is, quantitative targets of population size that ensure equal probabilities of persistence across a set of species and that can be easily inferred from species-specific traits. In our method, we used models of population dynamics across a range of life-history traits related to species' body mass to estimate minimum viable population targets. We applied our method to a range of body masses of mammals, from 2 g to 3825 kg. The minimum viable population targets decreased asymptotically with increasing body mass and were on the same order of magnitude as minimum viable population estimates from species- and context-specific studies. Our approach provides a compromise between pragmatic, nonspecific population targets and detailed context-specific estimates of population viability for which only limited data are available. It enables a first estimation of species-specific population targets based on a readily available trait and thus allows setting equitable targets for population persistence in large-scale and multispecies conservation assessments and planning.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Mamíferos , Animais , Dinâmica Populacional
14.
Ecol Appl ; 25(2): 402-15, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26263663

RESUMO

Wildlife management to reduce the impact of wildlife on their habitat can be done in several ways, among which removing animals (by either culling or translocation) is most often used. There are, however, alternative ways to control wildlife densities, such as opening or closing water points. The effects of these alternatives are poorly studied. In this paper, we focus on manipulating large herbivores through the closure of water points (WPs). Removal of artificial WPs has been suggested in order to change the distribution of African elephants, which occur in high densities in national parks in Southern Africa and are thought to have a destructive effect on the vegetation. Here, we modeled the long-term effects of different scenarios of WP closure on the spatial distribution of elephants, and consequential effects on the vegetation and other herbivores in Kruger National Park, South Africa. Using a dynamic ecosystem model, SAVANNA, scenarios were evaluated that varied in availability of artificial WPs; levels of natural water; and elephant densities. Our modeling results showed that elephants can indirectly negatively affect the distributions of meso-mixed feeders, meso-browsers, and some meso-grazers under wet conditions. The closure of artificial WPs hardly had any effect during these natural wet conditions. Under dry conditions, the spatial distribution of both elephant bulls and cows changed when the availability of artificial water was severely reduced in the model. These changes in spatial distribution triggered changes in the spatial availability of woody biomass over the simulation period of 80 years, and this led to changes in the rest of the herbivore community, resulting in increased densities of all herbivores, except for giraffe and steenbok, in areas close to rivers. The spatial distributions of elephant bulls and cows showed to be less affected by the closure of WPs than most of the other herbivore species. Our study contributes to ecologically informed decisions in wildlife management. The results from this modeling exercise imply that long-term effects of this intervention strategy should always be investigated at an ecosystem scale.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Elefantes , Modelos Biológicos , Água , Animais , Simulação por Computador , Plantas/classificação , Densidade Demográfica , Dinâmica Populacional
15.
Science ; 384(6694): 458-465, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662818

RESUMO

Based on an extensive model intercomparison, we assessed trends in biodiversity and ecosystem services from historical reconstructions and future scenarios of land-use and climate change. During the 20th century, biodiversity declined globally by 2 to 11%, as estimated by a range of indicators. Provisioning ecosystem services increased several fold, and regulating services decreased moderately. Going forward, policies toward sustainability have the potential to slow biodiversity loss resulting from land-use change and the demand for provisioning services while reducing or reversing declines in regulating services. However, negative impacts on biodiversity due to climate change appear poised to increase, particularly in the higher-emissions scenarios. Our assessment identifies remaining modeling uncertainties but also robustly shows that renewed policy efforts are needed to meet the goals of the Convention on Biological Diversity.


Assuntos
Biodiversidade , Mudança Climática , Extinção Biológica
16.
Nat Ecol Evol ; 3(4): 628-637, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833755

RESUMO

Biodiversity and ecosystem service losses driven by land-use change are expected to intensify as a growing and more affluent global population requires more agricultural and forestry products, and teleconnections in the global economy lead to increasing remote environmental responsibility. By combining global biophysical and economic models, we show that, between the years 2000 and 2011, overall population and economic growth resulted in increasing total impacts on bird diversity and carbon sequestration globally, despite a reduction of land-use impacts per unit of gross domestic product (GDP). The exceptions were North America and Western Europe, where there was a reduction of forestry and agriculture impacts on nature accentuated by the 2007-2008 financial crisis. Biodiversity losses occurred predominantly in Central and Southern America, Africa and Asia with international trade an important and growing driver. In 2011, 33% of Central and Southern America and 26% of Africa's biodiversity impacts were driven by consumption in other world regions. Overall, cattle farming is the major driver of biodiversity loss, but oil seed production showed the largest increases in biodiversity impacts. Forestry activities exerted the highest impact on carbon sequestration, and also showed the largest increase in the 2000-2011 period. Our results suggest that to address the biodiversity crisis, governments should take an equitable approach recognizing remote responsibility, and promote a shift of economic development towards activities with low biodiversity impacts.


Assuntos
Agricultura , Biodiversidade , Sequestro de Carbono , Desenvolvimento Econômico , Agricultura Florestal , Animais , Aves , Bovinos , Humanos , Modelos Teóricos , Crescimento Demográfico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa