Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem Biol ; 19(4): 498-506, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36702959

RESUMO

[NiFe]-hydrogenases are biotechnologically relevant enzymes catalyzing the reversible splitting of H2 into 2e- and 2H+ under ambient conditions. Catalysis takes place at the heterobimetallic NiFe(CN)2(CO) center, whose multistep biosynthesis involves careful handling of two transition metals as well as potentially harmful CO and CN- molecules. Here, we investigated the sequential assembly of the [NiFe] cofactor, previously based on primarily indirect evidence, using four different purified maturation intermediates of the catalytic subunit, HoxG, of the O2-tolerant membrane-bound hydrogenase from Cupriavidus necator. These included the cofactor-free apo-HoxG, a nickel-free version carrying only the Fe(CN)2(CO) fragment, a precursor that contained all cofactor components but remained redox inactive and the fully mature HoxG. Through biochemical analyses combined with comprehensive spectroscopic investigation using infrared, electronic paramagnetic resonance, Mössbauer, X-ray absorption and nuclear resonance vibrational spectroscopies, we obtained detailed insight into the sophisticated maturation process of [NiFe]-hydrogenase.


Assuntos
Cupriavidus necator , Hidrogenase , Domínio Catalítico , Hidrogenase/química , Hidrogenase/metabolismo , Cupriavidus necator/química , Cupriavidus necator/metabolismo , Oxirredução , Níquel
2.
Nano Lett ; 24(1): 370-377, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38154104

RESUMO

The selective interaction of cytochrome c (Cyt c) with cardiolipin (CL) is involved in mitochondrial membrane permeabilization, an essential step for the release of apoptosis activators. The structural basis and modulatory mechanism are, however, poorly understood. Here, we report that Cyt c can induce CL peroxidation independent of reactive oxygen species, which is controlled by its redox states. The structural basis of the Cyt c-CL binding was unveiled by comprehensive spectroscopic investigation and mass spectrometry. The Cyt c-induced permeabilization and its effect on membrane collapse, pore formation, and budding are observed by confocal microscopy. Moreover, cytochrome c oxidase dysfunction is found to be associated with the initiation of Cyt c redox-controlled membrane permeabilization. These results verify the significance of a redox-dependent modulation mechanism at the early stage of apoptosis, which can be exploited for the design of cytochrome c oxidase-targeted apoptotic inducers in cancer therapy.


Assuntos
Citocromos c , Análise Espectral Raman , Citocromos c/química , Citocromos c/metabolismo , Citocromos c/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oxirredução , Cardiolipinas/química , Cardiolipinas/metabolismo , Cardiolipinas/farmacologia , Membranas Mitocondriais/metabolismo , Apoptose
3.
J Am Chem Soc ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967560

RESUMO

Cytochrome c oxidase (CcO) is a heme copper oxidase (HCO) that catalyzes the natural reduction of oxygen to water. A profound understanding of some of the elementary steps leading to the intricate 4e-/4H+ reduction of O2 is presently lacking. A total spin St = 1 FeIII-(O22-)-CuII (IP) intermediate is proposed to reduce the overpotentials associated with the reductive O-O bond rupture by allowing electron transfer from a tyrosine moiety without the necessity of any spin-surface crossing. Direct evidence of the involvement of IP in the CcO catalytic cycle is, however, missing. A number of heme copper peroxido complexes have been prepared as synthetic models of IP, but all of them possess the catalytically nonrelevant St = 0 ground state resulting from antiferromagnetic coupling between the S = 1/2 FeIII and CuII centers. In a complete nonheme approach, we now report the spectroscopic characterization and reactivity of the FeIII-(O22-)-CuII intermediates 1 and 2, which differ only by a single -CH3 versus -H substituent on the central amine of the tridentate ligands binding to copper. Complex 1 with an end-on peroxido core and ferromagnetically (St = 1) coupled FeIII and CuII centers performs H-bonding-mediated O-O bond cleavage in the presence of phenol to generate oxoiron(IV) and exchange-coupled copper(II) and PhO• moieties. In contrast, the µ-η2:η1 peroxido complex 2, with a St = 0 ground state, is unreactive toward phenol. Thus, the implications for spin topology contributions to O-O bond cleavage, as proposed for the heme FeIII-(O22-)-CuII intermediate in CcO, can be extended to nonheme chemistry.

4.
J Am Chem Soc ; 145(1): 7-11, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36542731

RESUMO

The noncubane [4Fe-4S] cluster identified in the active site of heterodisulfide reductase (HdrB) displays a unique geometry among Fe-S cofactors found in metalloproteins. Here we employ resonance Raman (RR) spectroscopy and density functional theory (DFT) calculations to probe structural, electronic, and vibrational properties of the noncubane cluster in HdrB from a non-methanogenic Desulfovibrio vulgaris (Dv) Hildenborough organism. The immediate protein environment of the two neighboring clusters in DvHdrB is predicted using homology modeling. We demonstrate that in the absence of substrate, the oxidized [4Fe-4S]3+ cluster adopts a "closed" conformation. Upon substrate coordination at the "special" iron center, the cluster core translates to an "open" structure, facilitated by the "supernumerary" cysteine ligand switch from iron-bridging to iron-terminal mode. The observed RR fingerprint of the noncubane cluster, supported by Fe-S vibrational mode analysis, will advance future studies of enzymes containing this unusual cofactor.


Assuntos
Proteínas Ferro-Enxofre , Proteínas Ferro-Enxofre/química , Oxirredutases/metabolismo , Análise Espectral Raman , Ferro/química , Espectroscopia de Ressonância de Spin Eletrônica
5.
Angew Chem Int Ed Engl ; 62(12): e202217076, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36583430

RESUMO

In class Ib ribonucleotide reductases (RNRs) a dimanganese(II) cluster activates superoxide (O2 ⋅- ) rather than dioxygen (O2 ), to access a high valent MnIII -O2 -MnIV species, responsible for the oxidation of tyrosine to tyrosyl radical. In a biomimetic approach, we report the synthesis of a thiolate-bound dimanganese complex [MnII 2 (BPMT)(OAc)2 ](ClO)4 (BPMT=(2,6-bis{[bis(2-pyridylmethyl)amino]methyl}-4-methylthiophenolate) (1) and its reaction with O2 ⋅- to form a [(BPMT)MnO2 Mn]2+ complex 2. Resonance Raman investigation revealed the presence of an O-O bond in 2, while EPR analysis displayed a 16-line St =1/2 signal at g=2 typically associated with a MnIII MnIV core, as detected in class Ib RNRs. Unlike all other previously reported Mn-O2 -Mn complexes, generated by O2 ⋅- activation at Mn2 centers, 2 proved to be a capable electrophilic oxidant in aldehyde deformylation and phenol oxidation reactions, rendering it one of the best structural and functional models for class Ib RNRs.

6.
Angew Chem Int Ed Engl ; 62(6): e202214074, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36378951

RESUMO

In many metalloenzymes, sulfur-containing ligands participate in catalytic processes, mainly via the involvement in electron transfer reactions. In a biomimetic approach, we now demonstrate the implication of S-ligation in cobalt mediated oxygen reduction reactions (ORR). A comparative study between the catalytic ORR capabilities of the four-nitrogen bound [Co(cyclam)]2+ (1; cyclam=1,5,8,11-tetraaza-cyclotetradecane) and the S-containing analog [Co(S2 N2 -cyclam)]2+ (2; S2 N2 -cyclam=1,8-dithia-5,11-diaza-cyclotetradecane) reveals improved catalytic performance once the chalcogen is introduced in the Co coordination sphere. Trapping and characterization of the intermediates formed upon dioxygen activation at the CoII centers in 1 and 2 point to the involvement of sulfur in the O2 reduction process as the key for the improved catalytic ORR capabilities of 2.

7.
Chemistry ; 28(54): e202201091, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35662280

RESUMO

Biological carbon dioxide (CO2 ) reduction is an important step by which organisms form valuable energy-richer molecules required for further metabolic processes. The Mo-dependent formate dehydrogenase (FDH) from Rhodobacter capsulatus catalyzes reversible formate oxidation to CO2 at a bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor. To elucidate potential substrate binding sites relevant for the mechanism, we studied herein the interaction with the inhibitory molecules azide and cyanate, which are isoelectronic to CO2 and charged as formate. We employed infrared (IR) spectroscopy in combination with density functional theory (DFT) and inhibition kinetics. One distinct inhibitory molecule was found to bind to either a non-competitive or a competitive binding site in the secondary coordination sphere of the active site. Site-directed mutagenesis of key amino acid residues in the vicinity of the bis-MGD cofactor revealed changes in both non-competitive and competitive binding, whereby the inhibitor is in case of the latter interaction presumably bound between the cofactor and the adjacent Arg587.


Assuntos
Dióxido de Carbono , Formiato Desidrogenases , Aminoácidos/metabolismo , Azidas , Sítios de Ligação , Dióxido de Carbono/química , Cianatos , Formiato Desidrogenases/química , Formiatos/química , Oxirredução
8.
Chem Rev ; 120(7): 3577-3630, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-31814387

RESUMO

The mechanistic understanding of protein functions requires insight into the structural and reaction dynamics. To elucidate these processes, a variety of experimental approaches are employed. Among them, time-resolved (TR) resonance Raman (RR) is a particularly versatile tool to probe processes of proteins harboring cofactors with electronic transitions in the visible range, such as retinal or heme proteins. TR RR spectroscopy offers the advantage of simultaneously providing molecular structure and kinetic information. The various TR RR spectroscopic methods can cover a wide dynamic range down to the femtosecond time regime and have been employed in monitoring photoinduced reaction cascades, ligand binding and dissociation, electron transfer, enzymatic reactions, and protein un- and refolding. In this account, we review the achievements of TR RR spectroscopy of nearly 50 years of research in this field, which also illustrates how the role of TR RR spectroscopy in molecular life science has changed from the beginning until now. We outline the various methodological approaches and developments and point out current limitations and potential perspectives.


Assuntos
Bacteriorodopsinas/química , Hemeproteínas/química , Animais , Bactérias/química , Heme/química , Humanos , Retinaldeído/química , Análise Espectral Raman/métodos , Vibração
9.
Phys Chem Chem Phys ; 24(19): 11967-11978, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35527718

RESUMO

Phytochromes, found in plants, fungi, and bacteria, exploit light as a source of information to control physiological processes via photoswitching between two states of different physiological activity, i.e. a red-absorbing Pr and a far-red-absorbing Pfr state. Depending on the relative stability in the dark, bacterial phytochromes are divided into prototypical and bathy phytochromes, where the stable state is Pr and Pfr, respectively. In this work we studied representatives of these groups (prototypical Agp1 and bathy Agp2 from Agrobacterium fabrum) together with the bathy-like phytochrome XccBphP from Xanthomonas campestris by resonance Raman and IR difference spectroscopy. In all three phytochromes, the photoinduced conversions display the same mechanistic pattern as reflected by the chromophore structures in the various intermediate states. We also observed in each case the secondary structure transition of the tongue, which is presumably crucial for the function of phytochrome. The three phytochromes differ in details of the chromophore conformation in the various intermediates and the energetic barrier of their respective decay reactions. The specific protein environment in the chromophore pocket, which is most likely the origin for these small differences, also controls the proton transfer processes concomitant to the photoconversions. These proton translocations, which are tightly coupled to the structural transition of the tongue, presumably proceed via the same mechanism along the Pr → Pfr conversion whereas the reverse Pfr → Pr photoconversion includes different proton transfer pathways. Finally, classification of phytochromes in prototypical and bathy (or bathy-like) phytochromes is discussed in terms of molecular structure and mechanistic properties.


Assuntos
Fitocromo , Bactérias/metabolismo , Proteínas de Bactérias/química , Fitocromo/química , Prótons
10.
Biochemistry ; 60(40): 2967-2977, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34570488

RESUMO

Phytochromes switch between a physiologically inactive and active state via a light-induced reaction cascade, which is initiated by isomerization of the tetrapyrrole chromophore and leads to the functionally relevant secondary structure transition of a protein segment (tongue). Although details of the underlying cause-effect relationships are not known, electrostatic fields are likely to play a crucial role in coupling chromophores and protein structural changes. Here, we studied local electric field changes during the photoconversion of the dark state Pfr to the photoactivated state Pr of the bathy phytochrome Agp2. Substituting Tyr165 and Phe192 in the chromophore pocket by para-cyanophenylalanine (pCNF), we monitored the respective nitrile stretching modes in the various states of photoconversion (vibrational Stark effect). Resonance Raman and IR spectroscopic analyses revealed that both pCNF-substituted variants undergo the same photoinduced structural changes as wild-type Agp2. Based on a structural model for the Pfr state of F192pCNF, a molecular mechanical-quantum mechanical approach was employed to calculate the electric field at the nitrile group and the respective stretching frequency, in excellent agreement with the experiment. These calculations serve as a reference for determining the electric field changes in the photoinduced states of F192pCNF. Unlike F192pCNF, the nitrile group in Y165pCNF is strongly hydrogen bonded such that the theoretical approach is not applicable. However, in both variants, the largest changes of the nitrile stretching modes occur in the last step of the photoconversion, supporting the view that the proton-coupled restructuring of the tongue is accompanied by a change of the electric field.


Assuntos
Proteínas de Bactérias/química , Fitocromo/química , Agrobacterium/química , Alanina/análogos & derivados , Alanina/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/efeitos da radiação , Sítios de Ligação , Luz , Simulação de Dinâmica Molecular , Mutação , Nitrilas/química , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo/efeitos da radiação , Conformação Proteica/efeitos da radiação , Eletricidade Estática , Estereoisomerismo , Tetrapirróis/química , Tetrapirróis/metabolismo
11.
J Biol Chem ; 295(2): 539-551, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31801828

RESUMO

Sensing of red and far-red light by bacteriophytochromes involves intricate interactions between their bilin chromophore and the protein environment. The light-triggered rearrangements of the cofactor configuration and eventually the protein conformation enable bacteriophytochromes to interact with various protein effector domains for biological modulation of diverse physiological functions. Excitation of the holoproteins by red or far-red light promotes the photoconversion to their far-red light-absorbing Pfr state or the red light-absorbing Pr state, respectively. Because prototypical bacteriophytochromes have a parallel dimer architecture, it is generally assumed that symmetric activation with two Pfr state protomers constitutes the signaling-active species. However, the bacteriophytochrome from Idiomarina species A28L (IsPadC) has recently been reported to enable long-range signal transduction also in asymmetric dimers containing only one Pfr protomer. By combining crystallography, hydrogen-deuterium exchange coupled to MS, and vibrational spectroscopy, we show here that Pfr of IsPadC is in equilibrium with an intermediate "Pfr-like" state that combines features of Pfr and Meta-R states observed in other bacteriophytochromes. We also show that structural rearrangements in the N-terminal segment (NTS) can stabilize this Pfr-like state and that the PHY-tongue conformation of IsPadC is partially uncoupled from the initial changes in the NTS. This uncoupling enables structural asymmetry of the overall homodimeric assembly and allows signal transduction to the covalently linked physiological diguanylate cyclase output module in which asymmetry might play a role in the enzyme-catalyzed reaction. The functional differences to other phytochrome systems identified here highlight opportunities for using additional red-light sensors in artificial sensor-effector systems.


Assuntos
Alteromonadaceae/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Fitocromo/metabolismo , Regulação Alostérica , Alteromonadaceae/química , Proteínas de Bactérias/química , Cristalografia por Raios X , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Ativação Enzimática , Proteínas de Escherichia coli/química , Modelos Moleculares , Fósforo-Oxigênio Liases/química , Fitocromo/química , Conformação Proteica , Multimerização Proteica
12.
J Am Chem Soc ; 143(7): 2769-2776, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33560128

RESUMO

Cytochrome c oxidase (CcO) in its as-isolated form is known to exist in a slow and fast form, which differ drastically in their ability to bind oxygen and other ligands. While preparation methods have been established that yield either the fast or the slow form of the protein, the underlying structural differences have not been identified yet. Here, we have performed surface enhanced resonance Raman (SERR) spectroscopy of CcO immobilized on electrodes in both forms. SERR spectra obtained in resonance with the heme a3 metal-to-ligand charge transfer (MLCT) transition at 650 nm displayed a sharp vibrational band at 748 or 750 cm-1 when the protein was in its slow or fast form, respectively. DFT calculations identified the band as a mode of the His-419 ligand that is sensitive to the oxygen ligand and the protonation state of Tyr-288 within the binuclear complex. Potential-dependent SERR spectroscopy showed a redox-induced change of this band around 525 mV versus Ag/AgCl exclusively for the fast form, which coincides with the redox potential of the Tyr-O/Tyr-O- transition. Our data points to a peroxide ligand in the resting state of CcO for both forms. The observed frequencies and redox sensitivities of the Raman marker band suggest that a radical Tyr-288 is present in the fast form and a protonated Tyr-288 in the slow form.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Imobilizadas , Análise Espectral Raman , Teoria da Densidade Funcional , Técnicas Eletroquímicas , Eletrodos , Complexo IV da Cadeia de Transporte de Elétrons/química , Heme/química , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Ligantes , Oxigênio/química , Oxigênio/metabolismo , Rhodobacter sphaeroides/metabolismo
13.
Phys Chem Chem Phys ; 23(33): 18197-18205, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34612283

RESUMO

Bacterial phytochromes are sensoric photoreceptors that transform light absorbed by the photosensor core module (PCM) to protein structural changes that eventually lead to the activation of the enzymatic output module. The underlying photoinduced reaction cascade in the PCM starts with the isomerization of the tetrapyrrole chromophore, followed by conformational relaxations, proton transfer steps, and a secondary structure transition of a peptide segment (tongue) that is essential for communicating the signal to the output module. In this work, we employed various static and time-resolved IR and resonance Raman spectroscopic techniques to study the structural and reaction dynamics of the Meta-F intermediate of both the PCM and the full-length (PCM and output module) variant of the bathy phytochrome Agp2 from Agrobacterium fabrum. In both cases, this intermediate represents a branching point of the phototransformation, since it opens an unproductive reaction channel back to the initial state and a productive pathway to the final active state, including the functional protein structural changes. It is shown that the functional quantum yield, i.e. the events of tongue refolding per absorbed photons, is lower by a factor of ca. two than the quantum yield of the primary photochemical process. However, the kinetic data derived from the spectroscopic experiments imply an increased formation of the final active state upon increasing photon flux or elevated temperature under photostationary conditions. Accordingly, the branching mechanism does not only account for the phytochrome's function as a light intensity sensor but may also modulate its temperature sensitivity.


Assuntos
Agrobacterium/metabolismo , Proteínas de Bactérias/metabolismo , Luz , Fitocromo/metabolismo , Temperatura , Tetrapirróis/metabolismo , Agrobacterium/química , Proteínas de Bactérias/química , Fitocromo/química , Tetrapirróis/química
14.
Molecules ; 26(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34443440

RESUMO

Vibrational spectroscopy and in particular, resonance Raman (RR) spectroscopy, can provide molecular details on metalloproteins containing multiple cofactors, which are often challenging for other spectroscopies. Due to distinct spectroscopic fingerprints, RR spectroscopy has a unique capacity to monitor simultaneously and independently different metal cofactors that can have particular roles in metalloproteins. These include e.g., (i) different types of hemes, for instance hemes c, a and a3 in caa3-type oxygen reductases, (ii) distinct spin populations, such as electron transfer (ET) low-spin (LS) and catalytic high-spin (HS) hemes in nitrite reductases, (iii) different types of Fe-S clusters, such as 3Fe-4S and 4Fe-4S centers in di-cluster ferredoxins, and (iv) bi-metallic center and ET Fe-S clusters in hydrogenases. IR spectroscopy can provide unmatched molecular details on specific enzymes like hydrogenases that possess catalytic centers coordinated by CO and CN- ligands, which exhibit spectrally well separated IR bands. This article reviews the work on metalloproteins for which vibrational spectroscopy has ensured advances in understanding structural and mechanistic properties, including multiple heme-containing proteins, such as nitrite reductases that house a notable total of 28 hemes in a functional unit, respiratory chain complexes, and hydrogenases that carry out the most fundamental functions in cells.


Assuntos
Metaloproteínas/química , Análise Espectral Raman , Heme/química , Proteínas Ferro-Enxofre/química , Oxirredução , Espectrofotometria Infravermelho
15.
Angew Chem Int Ed Engl ; 60(12): 6752-6756, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33348460

RESUMO

S=2 oxoiron(IV) species act as reactive intermediates in the catalytic cycle of nonheme iron oxygenases. The few available synthetic S=2 FeIV =O complexes known to date are often limited to trigonal bipyramidal and very rarely to octahedral geometries. Herein we describe the generation and characterization of an S=2 pseudotetrahedral FeIV =O complex 2 supported by the sterically demanding 1,4,7-tri-tert-butyl-1,4,7-triazacyclononane ligand. Complex 2 is a very potent oxidant in hydrogen atom abstraction (HAA) reactions with large non-classical deuterium kinetic isotope effects, suggesting hydrogen tunneling contributions. For sterically encumbered substrates, direct HAA is impeded and an alternative oxidative asynchronous proton-coupled electron transfer mechanism prevails, which is unique within the nonheme oxoiron community. The high reactivity and the similar spectroscopic parameters make 2 one of the best electronic and functional models for a biological oxoiron(IV) intermediate of taurine dioxygenase (TauD-J).

16.
Angew Chem Int Ed Engl ; 60(42): 23018-23024, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34309168

RESUMO

CuI /TEMPO (TEMPO=2,2,6,6-tetramethylpiperidinyloxyl) catalyst systems are versatile catalysts for aerobic alcohol oxidation reactions to selectively yield aldehydes. However, several aspects of the mechanism are yet unresolved, mainly because of the lack of identification of any reactive intermediates. Herein, we report the synthesis and characterization of a dinuclear [L12 Cu2 ]2+ complex 1, which in presence of TEMPO can couple the catalytic 4 H+ /4 e- reduction of O2 to water to the oxidation of benzylic and aliphatic alcohols. The mechanisms of the O2 -reduction and alcohol oxidation reactions have been clarified by the spectroscopic detection of the reactive intermediates in the gas and condensed phases, as well as by kinetic studies on each step in the catalytic cycles. Bis(µ-oxo)dicopper(III) (2) and bis(µ-hydroxo)dicopper(II) species 3 are shown as viable reactants in oxidation catalysis. The present study provides deep mechanistic insight into the aerobic oxidation of alcohols that should serve as a valuable foundation for ongoing efforts dedicated towards the understanding of transition-metal catalysts involving redox-active organic cocatalysts.

17.
Biochemistry ; 59(4): 509-519, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31840994

RESUMO

Cyanobacteriochromes (CBCRs) are photoreceptor proteins that photoconvert between two parent states and thereby regulate various biological processes. An intriguing property is their variable ultraviolet-visible (UV-vis) absorption that covers the entire spectral range from the far-red to the near-UV region and thus makes CBCRs promising candidates for optogenetic applications. Here, we have studied Slr1393, a CBCR that photoswitches between red- and green-absorbing states (Pr and Pg, respectively). Using UV-vis absorption, fluorescence, and resonance Raman (RR) spectroscopy, a further orange-absorbing state O600 that is in thermal equilibrium with Pr was identified. The different absorption properties of the three states were attributed to the different lengths of the conjugated π-electron system of the phycocyanobilin chromophore. In agreement with available crystal structures and supported by quantum mechanics/molecular mechanics (QM/MM) calculations, the most extended conjugation holds for Pr whereas it is substantially reduced in Pg. Here, the two outer pyrrole rings D and A are twisted out of the plane defined by inner pyrrole rings B and C. For the O600 state, the comparison of the experimental RR spectra with QM/MM-calculated spectra indicates a partially distorted ZZZssa geometry in which ring A is twisted while ring D and the adjacent methine bridge display essentially the same geometry as Pr. The quantitative analysis of temperature-dependent spectra yields an enthalpy barrier of ∼30 kJ/mol for the transition from Pr to O600. This reaction is associated with the movement of a conserved tryptophan residue from the chromophore binding pocket to a solvent-exposed position.


Assuntos
Fotorreceptores Microbianos/química , Ficobilinas/química , Ficocianina/química , Synechocystis/química , Proteínas de Bactérias/química , Cor , Cianobactérias/química , Cianobactérias/metabolismo , Luz , Simulação de Dinâmica Molecular , Fotorreceptores Microbianos/metabolismo , Ficobilinas/metabolismo , Ficocianina/metabolismo , Ficocianina/ultraestrutura , Fitocromo/química , Pigmentos Biológicos/química , Synechocystis/metabolismo , Temperatura
18.
Biochemistry ; 59(9): 1023-1037, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32073262

RESUMO

Phytochromes are biological photoswitches that interconvert between two parent states (Pr and Pfr). The transformation is initiated by photoisomerization of the tetrapyrrole chromophore, followed by a sequence of chromophore and protein structural changes. In the last step, a phytochrome-specific peptide segment (tongue) undergoes a secondary structure change, which in prokaryotic phytochromes is associated with the (de)activation of the output module. The focus of this work is the Pfr-to-Pr photoconversion of the bathy bacteriophytochrome Agp2 in which Pfr is the thermodynamically stable state. Using spectroscopic techniques, we studied the structural and functional consequences of substituting Arg211, Tyr165, His278, and Phe192 close to the biliverdin (BV) chromophore. In Pfr, substitutions of these residues do not affect the BV structure. The characteristic Pfr properties of bathy phytochromes, including the protonated propionic side chain of ring C (propC) of BV, are preserved. However, replacing Arg211 or Tyr165 blocks the photoconversion in the Meta-F state, prior to the secondary structure transition of the tongue and without deprotonation of propC. The Meta-F state of these variants displays low photochemical activity, but electronic excitation causes ultrafast alterations of the hydrogen bond network surrounding the chromophore. In all variants studied here, thermal back conversion from the photoproducts to Pfr is decelerated but substitution of His278 or Phe192 is not critical for the Pfr-to-Pr photoconversion. These variants do not impair deprotonation of propC or the α-helix/ß-sheet transformation of the tongue during the Meta-F-to-Pr decay. Thus, we conclude that propC deprotonation is essential for restructuring of the tongue.


Assuntos
Biliverdina/metabolismo , Fitocromo/química , Fitocromo/ultraestrutura , Agrobacterium tumefaciens , Proteínas de Bactérias/química , Ligação de Hidrogênio , Luz , Fitocromo/fisiologia , Prótons , Análise Espectral Raman/métodos , Tetrapirróis/química , Tetrapirróis/metabolismo
19.
J Am Chem Soc ; 142(13): 5924-5928, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32168447

RESUMO

In soluble methane monooxygenase enzymes (sMMO), dioxygen (O2) is activated at a diiron(II) center to form an oxodiiron(IV) intermediate Q that performs the challenging oxidation of methane to methanol. An analogous mechanism of O2 activation at mono- or dinuclear iron centers is rare in the synthetic chemistry. Herein, we report a mononuclear non-heme iron(II)-cyclam complex, 1-trans, that activates O2 to form the corresponding iron(IV)-oxo complex, 2-trans, via a mechanism reminiscent of the O2 activation process in sMMO. The conversion of 1-trans to 2-trans proceeds via the intermediate formation of an iron(III)-superoxide species 3, which could be trapped and spectroscopically characterized at -50 °C. Surprisingly, 3 is a stronger oxygen atom transfer (OAT) agent than 2-trans; 3 performs OAT to 1-trans or PPh3 to yield 2-trans quantitatively. Furthermore, 2-trans oxidizes the aromatic C-H bonds of 2,6-di-tert-butylphenol, which, together with the strong OAT ability of 3, represents new domains of oxoiron(IV) and superoxoiron(III) reactivities.


Assuntos
Compostos Heterocíclicos/metabolismo , Compostos de Ferro/metabolismo , Oxigênio/metabolismo , Oxigenases/metabolismo , Compostos Heterocíclicos/química , Compostos de Ferro/química , Modelos Moleculares , Oxirredução , Oxigênio/química , Superóxidos/química , Superóxidos/metabolismo
20.
Biochemistry ; 58(19): 2447-2462, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31016971

RESUMO

Cathelicidins are a family of host defense antimicrobial peptides in mammalian species. Among them, LL-37 is the only peptide of this family found in humans. Although LL-37 has been intensively investigated in the past, the mode of exerting its bactericidal activity through the specific interactions with bacterial membranes remains elusive. In this work, we combined microbiological and computational approaches with a tool box of experimental biophysical techniques, including conventional and surface-enhanced infrared absorption spectroscopy as well as fluorescence spectroscopy to characterize the structural and dynamic properties of LL-37 and shorter variants adsorbed on POPC/POPG (9:1) lipid bilayers as mimics of bacterial membranes. First, microbiological assays demonstrate that, while LL-32 and, in a lesser degree, LL-37 show hemolysis and antimicrobial activity, LL-20 remains practically inactive. Second, by comparing experimental and computational data of LL-37 with LL-20, we explained the bactericidal activity of the active peptide core as a consequence of an increased flexibility of the peptide structure, leading to reactive dangling charged side chains. Third, permeabilization assays showed a concentration-dependent membrane disruption activity of LL-37 and LL-32: at high peptide concentrations, LL-32 shows higher activity than LL-37, while, at low peptide concentrations, both peptides show similar activities. Responsible for this behavior is the C-terminal VPRTES tail (Ct-VPRTES tail), which, according to atomistic simulations, is able to promote the insertion of the peptide in the membrane and plays an essential role in controlling ordered peptide oligomerization on the surface of the membrane.


Assuntos
Antibacterianos/metabolismo , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Catelicidinas/metabolismo , Catelicidinas/farmacologia , Bicamadas Lipídicas/metabolismo , Sequência de Aminoácidos , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Catelicidinas/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Lipossomos/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa