RESUMO
Therapy using anti-PD-1 immune checkpoint inhibitors (ICI) has revolutionized the treatment of many cancers including head and neck squamous cell carcinomas (HNSCC), but only a fraction of patients respond. To better understand the molecular mechanisms driving resistance, we performed extensive analysis of plasma and tumor tissues before and after a 4-week neoadjuvant trial in which HNSCC patients were treated with the anti-PD-1 inhibitor, nivolumab. Luminex cytokine analysis of patient plasma demonstrated that HPVpos nonresponders displayed high levels of the proinflammatory chemokine, interleukin-8 (IL-8), which decreased after ICI treatment, but remained higher than responders. miRNAseq analysis of tetraspanin-enriched small extracellular vesicles (sEV) purified from plasma of HPVpos nonresponders demonstrated significantly lower levels of seven miRNAs that target IL-8 including miR-146a. Levels of the pro-survival oncoprotein Dsg2, which has been to down-regulate miR-146a, are elevated with HPVpos tumors displaying higher levels than HPVneg tumors. Dsg2 levels decrease significantly following ICI in responders but not in nonresponders. In cultured HPVpos cells, restoration of miR-146a by forced expression or treatment with miR-146a-loaded sEV, reduced IL-8 level, blocked cell cycle progression, and promoted cell death. These findings identify Dsg2, miR-146a, and IL-8 as potential biomarkers for ICI response and suggest that the Dsg2/miR-146a/IL-8 signaling axis negatively impacts ICI treatment outcomes and could be targeted to improve ICI responsiveness in HPVpos HNSCC patients.
Assuntos
Vesículas Extracelulares , Neoplasias de Cabeça e Pescoço , MicroRNAs , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Interleucina-8/genética , Nivolumabe/farmacologia , Nivolumabe/uso terapêutico , Terapia Neoadjuvante , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Vesículas Extracelulares/metabolismoRESUMO
Background: Papillary thyroid carcinoma (PTC) is the most common thyroid malignancy, with a 20% recurrence rate. Bitter taste receptors (T2Rs) and their genes ( TAS2Rs ) may regulate survival in solid tumors. This study examined T2R expression and function in PTC cells. Methods: Three PTC cell lines (MDA-T32, MDA-T68, MDA-T85) were analyzed for expression using RT-qPCR and immunofluorescence. Live cell imaging measured calcium responses to six bitter agonists. Viability and apoptosis effects were assessed using crystal violet and caspase 3/7 activation assays. Genome analysis of survival was conducted. Results: TAS2R14 was consistently highly expressed in all cell lines. Five bitter agonists produced significant calcium responses across all cell lines. All bitter agonists significantly decreased viability and induced apoptosis. Higher TAS2R14 expression correlated with better progression-free survival in patients (p<0.05). Conclusions: T2R activation by bitter agonists induces apoptosis and higher TAS2R expression is associated with survival, suggesting potential therapeutic relevance in thyroid cancer management.
RESUMO
Exosomes or small extracellular vesicles (sEVs) are membrane-bound nanoparticles that carry various macromolecules and act as autocrine and paracrine signaling messengers. In this study, sEVs from epidermoid carcinoma cells influenced by membrane presentation of the glycoprotein desmoglein 2 and its palmitoylation state were investigated. In this study, sEVs were isolated by sequential ultracentrifugation followed by iodixanol density gradient separation. They were then subjected to multiplex profiling of cytokines associated with the surface of intact sEVs. The results revealed a previously undescribed active sorting of cytokines onto the surface of low-density and high-density sEV subpopulations. Specifically, an altered surface presentation of desmoglein 2 decreased FGF-2 and VEGF in low-density sEVs. In addition, in response to desmoglein 2, IL-8 and RANTES were increased in low-density sEVs but only slightly decreased in high-density sEVs. Finally, IL-6 and G-CSF were increased dramatically in high-density sEVs. This comprehensive analysis of the cytokine production profile by squamous cell carcinomaâderived sEVs highlights their contribution to immune evasion, pro-oncogenic and proangiogenic activity, and the potential to identify diagnostic disease biomarkers.
RESUMO
Exosomes, or small extracellular vesicles (sEVs), serve as intercellular messengers with key roles in normal and pathological processes. Our previous work had demonstrated that Dsg2 expression in squamous cell carcinoma (SCC) cells enhanced both sEV secretion and loading of pro-mitogenic cargo. In this study, using wild-type Dsg2 and a mutant form that is unable to be palmitoylated (Dsg2cacs), we investigated the mechanism by which Dsg2 modulates SCC tumour development and progression through sEVs. We demonstrate that palmitoylation was required for Dsg2 to regulate sub-cellular localisation of lipid raft and endosomal proteins necessary for sEV biogenesis. Pharmacological inhibition of the endosomal pathway abrogated Dsg2-mediated sEV release. In murine xenograft models, Dsg2-expressing cells generated larger xenograft tumours as compared to cells expressing GFP or Dsg2cacs. Co-treatment with sEVs derived from Dsg2-over-expressing cells increased xenograft size. Cytokine profiling revealed, Dsg2 enhanced both soluble and sEV-associated IL-8 and miRNA profiling revealed, Dsg2 down-regulated both cellular and sEV-loaded miR-146a. miR-146a targets IRAK1, a serine-threonine kinase involved in IL-8 signalling. Treatment with a miR-146a inhibitor up-regulated both IRAK1 and IL-8 expression. RNAseq analysis of HNSCC tumours revealed a correlation between Dsg2 and IL-8. Finally, elevated IL-8 plasma levels were detected in a subset of HNSCC patients who did not respond to immune checkpoint therapy, suggesting that these patients may benefit from prior anti-IL-8 treatment. In summary, these results suggest that intercellular communication through cell-cell adhesion, cytokine release and secretion of EVs are coordinated, and critical for tumour growth and development, and may serve as potential prognostic markers to inform treatment options. ABBREVIATIONS: Basal cell carcinomas, BCC; Betacellulin, BTC; 2-bromopalmitate, 2-Bromo; Cluster of differentiation, CD; Cytochrome c oxidase IV, COX IV; Desmoglein 2, Dsg2; Early endosome antigen 1, EEA1; Epidermal growth factor receptor substrate 15, EPS15; Extracellular vesicle, EV; Flotillin 1, Flot1; Glyceraldehyde-3-phosphate dehydrogenase, GAPH; Green fluorescent protein, GFP; Head and neck squamous cell carcinoma, HNSCC; Interleukin-1 receptor-associated kinase 1, IRAK1; Interleukin 8, IL-8; Large EV, lEV; MicroRNA, miR; Palmitoylacyltransferase, PAT; Ras-related protein 7 Rab7; Small EV, sEV; Squamous cell carcinoma, SCC; Tissue inhibitor of metalloproteinases, TIMP; Tumour microenvironment, TME.