Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(18): e2120259119, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094141

RESUMO

The US Environmental Protection Agency (EPA) uses a water quality index (WQI) to estimate benefits of proposed Clean Water Act regulations. The WQI is relevant to human use value, such as recreation, but may not fully capture aspects of nonuse value, such as existence value. Here, we identify an index of biological integrity to supplement the WQI in a forthcoming national stated preference survey that seeks to capture existence value of streams and lakes more accurately within the conterminous United States (CONUS). We used literature and focus group research to evaluate aquatic indices regularly reported by the EPA's National Aquatic Resource Surveys. We chose an index that quantifies loss in biodiversity as the observed-to-expected (O/E) ratio of taxonomic composition because focus group participants easily understood its meaning and the environmental changes that would result in incremental improvements. However, available datasets of this index do not provide the spatial coverage to account for how conditions near survey respondents affect their willingness to pay for its improvement. Therefore, we modeled and interpolated the values of this index from sampled sites to 1.1 million stream segments and 297,071 lakes across the CONUS to provide the required coverage. The models explained 13 to 36% of the variation in O/E scores and demonstrate how modeling can provide data at the required density for benefits estimation. We close by discussing future work to improve performance of the models and to link biological condition with water quality and habitat models that will allow us to forecast changes resulting from regulatory options.


Assuntos
Biodiversidade , Ecossistema , Estados Unidos , Humanos , Qualidade da Água , Rios , Lagos , Monitoramento Ambiental/métodos
2.
J Am Water Resour Assoc ; 59(5): 1099-1114, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37941964

RESUMO

Channel dimensions (width and depth) at varying flows influence a host of instream ecological processes, as well as habitat and biotic features; they are a major consideration in stream habitat restoration and instream flow assessments. Models of widths and depths are often used to assess climate change vulnerability, develop endangered species recovery plans, and model water quality. However, development and application of such models require specific skillsets and resources. To facilitate acquisition of such estimates, we created a dataset of modeled channel dimensions for perennial stream segments across the conterminous U.S. We used random forest models to predict wetted width, thalweg depth, bankfull width, and bankfull depth from several thousand field measurements of the National Rivers and Streams Assessment. Observed channel widths varied from <5 m to >2000 m and depths varied from <2 m to >125 m. Metrics of watershed area, runoff, slope, land use, and more were used as model predictors. The models had high pseudo R-squared values (0.70 to 0.91) and median absolute errors within ±6% to ±21% of the interquartile range of measured values across ten stream orders. Predicted channel dimensions can be joined to 1.1 million stream segments of the 1:100K resolution National Hydrography Dataset Plus (version 2.1). These predictions, combined with a rapidly growing body of nationally available data, will further enhance our ability to study and protect aquatic resources.

3.
J Am Water Resour Assoc ; 59(5): 1162-1179, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-38152418

RESUMO

Eutrophication, harmful algal blooms, and human health impacts are critical environmental challenges resulting from excess nitrogen and phosphorus in surface waters. Yet we have limited information regarding how wetland characteristics mediate water quality across watershed scales. We developed a large, novel set of spatial variables characterizing hydrological flowpaths from wetlands to streams, that is, "wetland hydrological transport variables," to explore how wetlands statistically explain the variability in total nitrogen (TN) and total phosphorus (TP) concentrations across the Upper Mississippi River Basin (UMRB) in the United States. We found that wetland flowpath variables improved landscape-to-aquatic nutrient multilinear regression models (from R2 = 0.89 to 0.91 for TN; R2 = 0.53 to 0.84 for TP) and provided insights into potential processes governing how wetlands influence watershed-scale TN and TP concentrations. Specifically, flowpath variables describing flow-attenuating environments, for example, subsurface transport compared to overland flowpaths, were related to lower TN and TP concentrations. Frequent hydrological connections from wetlands to streams were also linked to low TP concentrations, which likely suggests a nutrient source limitation in some areas of the UMRB. Consideration of wetland flowpaths could inform management and conservation activities designed to reduce nutrient export to downstream waters.

4.
Limnol Oceanogr ; 67(7): 1484-1501, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36212524

RESUMO

Lake water levels are integral to lake function, but hydrologic changes from land and water management may alter lake fluctuations beyond natural ranges. We constructed a conceptual model of multifaceted drivers of lake water-levels and evaporation-to-inflow ratio (Evap:Inflow). Using a structural equation modeling framework, we tested our model on 1) a national subset of lakes in the conterminous United States with minimal water management to describe natural drivers of lake hydrology and 2) five ecoregional subsets of lakes to explore regional variation in water management effects. Our model fit the national and ecoregional datasets and explained up to 47% of variation in Evap:Inflow, 38% of vertical water-level decline, and 79% of horizontal water-level decline (littoral exposure). For lakes with minimal water management, Evap:Inflow was related to lake depth (ß = -0.31) and surface inflow (ß = -0.44); vertical decline was related to annual climate (e.g., precipitation ß = -0.18) and water management (ß = -0.21); and horizontal decline was largely related to vertical decline (ß = 0.73) and lake morphometry (e.g., depth ß = -0.18). Anthropogenic effects varied by ecoregion and likely reflect differences in regional water management and climate. In the West, water management indicators were related to greater vertical decline (ß = 0.38), whereas in the Midwest, these indicators were related to more stable and full lake levels (ß = -0.22) even during drought conditions. National analyses show how human water use interacts with regional climate resulting in contrasting impacts to lake hydrologic variation in the US.

5.
Environ Sci Technol ; 56(21): 14960-14971, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35737903

RESUMO

Antimicrobial resistance (AR) is a serious global problem due to the overuse of antimicrobials in human, animal, and agriculture sectors. There is intense research to control the dissemination of AR, but little is known regarding the environmental drivers influencing its spread. Although AR genes (ARGs) are detected in many different environments, the risk associated with the spread of these genes to microbial pathogens is unknown. Recreational microbial exposure risks are likely to be greater in water bodies receiving discharge from human and animal waste in comparison to less disturbed aquatic environments. Given this scenario, research practitioners are encouraged to consider an ecological context to assess the effect of environmental ARGs on public health. Here, we use a stratified, probabilistic survey of nearly 2000 sites to determine national patterns of the anthropogenic indicator class I integron Integrase gene (intI1) and several ARGs in 1.2 million kilometers of United States (US) rivers and streams. Gene concentrations were greater in eastern than in western regions and in rivers and streams in poor condition. These first of their kind findings on the national distribution of intI1 and ARGs provide new information to aid risk assessment and implement mitigation strategies to protect public health.


Assuntos
Antibacterianos , Rios , Animais , Humanos , Estados Unidos , Antibacterianos/farmacologia , Genes Bacterianos , Farmacorresistência Bacteriana/genética , Integrons
6.
Ecol Indic ; 141: 1-13, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36003067

RESUMO

Taxonomic inconsistency in species-level identifications has constrained use of diatoms as biological indicators in aquatic assessments. We addressed this problem by developing diatom multimetric indices (MMIs) of ecological condition using genus-level taxonomy and trait-based autecological information. The MMIs were designed to assess river and stream chemical, physical and biological condition across the conterminous United States. Trait-based approaches have the advantage of using both species-level and genus-level data, which require less effort and expense to acquire than traditional species-based approaches and eliminate the persistent taxonomic biases introduced over vast geographic extents. For large-extent assessment programs that require multiple taxonomic laboratories to process samples, such as the United States Environmental Protection Agency's (U.S. EPA's) National Rivers and Streams Assessment (NRSA), the trait approach can eliminate discrepancies in species-level identification or nomenclature that hinder diatom data interpretation. We developed trait-based MMIs using NRSA data for each of the three large ecoregions across the U.S. - the East, Plains, and West. All three MMIs performed well in discriminating least-disturbed from most-disturbed sites. The MMI for the East had the greatest discrimination ability, followed by MMIs for the Plains and West, respectively. The performance of the MMIs was comparable to that observed in existing NRSA fish and macroinvertebrate MMIs. Our research shows that trait-based diatom indices constructed on genus-level taxonomy can be effective for large-scale assessments, and may also allow programs such as NRSA to assess trends in freshwater condition retrospectively, by revisiting older diatom datasets. Moreover, our genus-based approach facilitates including of diatoms into other assessment programs that have limited monitoring resources.

7.
Environ Sci Technol ; 55(12): 7890-7899, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34060819

RESUMO

To understand the environmental and anthropogenic drivers of stream nitrogen (N) concentrations across the conterminous US, we combined summer low-flow data from 4997 streams with watershed information across three survey periods (2000-2014) of the US EPA's National Rivers and Streams Assessment. Watershed N inputs explained 51% of the variation in log-transformed stream total N (TN) concentrations. Both N source and input rates influenced stream NO3/TN ratios and N concentrations. Streams dominated by oxidized N forms (NO3/TN ratio > 0.50) were more strongly responsive to the N input rate compared to streams dominated by other N forms. NO3 proportional contribution increased with N inputs, supporting N saturation-enhanced NO3 export to aquatic ecosystems. By combining information about N inputs with climatic and landscape factors, random forest models of stream N concentrations explained 70, 58, and 60% of the spatial variation in stream concentrations of TN, dissolved inorganic N, and total organic N, respectively. The strength and direction of relationships between watershed drivers and stream N concentrations and forms varied with N input intensity. Model results for high N input watersheds not only indicated potential contributions from contaminated groundwater to high stream N concentrations but also the mitigating role of wetlands.


Assuntos
Água Subterrânea , Rios , Ecossistema , Monitoramento Ambiental , Nitrogênio/análise , Estações do Ano
8.
Environ Manage ; 65(5): 602-617, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32200409

RESUMO

Sustainable development supports watershed processes and functions. To aid the sustainable development of the western Balkans' transboundary river and lake basins, the Regional Environmental Center for Central and Eastern Europe and the US Environmental Protection Agency (EPA) adapted the EPA's Index of Watershed Integrity (IWI) following the devasting 2014 floods in Albania, Bosnia and Herzegovina, Kosovo, North Macedonia, Montenegro, and Serbia. The IWI evaluates six watershed functions based on a suite of anthropogenic stressors (e.g., impervious surfaces, reservoirs). A key feature of the IWI is its ability to accumulate the impact of upstream activities of any specific location in a river network. A novel feature of the IWI, compared with other watershed assessment tools, is its capacity to provide actionable information at the local scale. IWI scores-ranging from 0 (low integrity) to 1 (high integrity)-calculated for the 1084 catchments of the study area indicated highest integrity in the Alpine geographic region (mean = 0.55, standard deviation (SD) = 0.11) and intermediate to lowest integrity within the Mediterranean (mean = 0.49, SD = 0.12) and Continental (mean = 0.40, SD = 0.10) geographic regions. The IWI results are presented hierarchically for data analysts (stressor, functional component, Index of Catchment Integrity and IWI), ecologists (stream/catchment, watershed, basin), and managers (local, national, international). We provide real-world examples for managers, and suggestions for improving the assessment.


Assuntos
Monitoramento Ambiental , Rios , Albânia , Península Balcânica , Europa Oriental
9.
Ecol Indic ; 85: 1133-1148, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29628801

RESUMO

Watershed integrity is the capacity of a watershed to support and maintain the full range of ecological processes and functions essential to sustainability. Using information from EPA's StreamCat dataset, we calculated and mapped an Index of Watershed Integrity (IWI) for 2.6 million watersheds in the conterminous US with first-order approximations of relationships between stressors and six watershed functions: hydrologic regulation, regulation of water chemistry, sediment regulation, hydrologic connectivity, temperature regulation, and habitat provision. Results show high integrity in the western US, intermediate integrity in the southern and eastern US, and the lowest integrity in the temperate plains and lower Mississippi Valley. Correlation between the six functional components was high (r = 0.85-0.98). A related Index of Catchment Integrity (ICI) was developed using local drainages of individual stream segments (i.e., excluding upstream information). We evaluated the ability of the IWI and ICI to predict six continuous site-level indicators with regression analyses - three biological indicators and principal components derived from water quality, habitat, and combined water quality and habitat variables - using data from EPA's National Rivers and Streams Assessment. Relationships were highly significant, but the IWI only accounted for 1-12% of the variation in the four biological and habitat variables. The IWI accounted for over 25% of the variation in the water quality and combined principal components nationally, and 32-39% in the Northern and Southern Appalachians. We also used multinomial logistic regression to compare the IWI with the categorical forms of the three biological indicators. Results were consistent: we found positive associations but modest results. We compared how the IWI and ICI predicted the water quality PC relative to agricultural and urban land use. The IWI or ICI are the best predictors of the water quality PC for the CONUS and six of the nine ecoregions, but they only perform marginally better than agriculture in most instances. However, results suggest that agriculture would not be appropriate in all parts of the country, and the index is meant to be responsive to all stressors. The IWI in its present form (available through the StreamCat website; https://www.epa.gov/national-aquatic-resource-surveys/streamcat) could be useful for management efforts at multiple scales, especially when combined with information on site condition. The IWI could be improved by incorporating empirical or literature-derived relationships between functional components and stressors. However, limitations concerning the absence of data for certain stressors should be considered.

10.
Ecol Appl ; 27(8): 2397-2415, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28871655

RESUMO

Understanding and mapping the spatial variation in stream biological condition could provide an important tool for conservation, assessment, and restoration of stream ecosystems. The USEPA's 2008-2009 National Rivers and Streams Assessment (NRSA) summarizes the percentage of stream lengths within the conterminous United States that are in good, fair, or poor biological condition based on a multimetric index of benthic invertebrate assemblages. However, condition is usually summarized at regional or national scales, and these assessments do not provide substantial insight into the spatial distribution of conditions at unsampled locations. We used random forests to model and predict the probable condition of several million kilometers of streams across the conterminous United States based on nearby and upstream landscape features, including human-related alterations to watersheds. To do so, we linked NRSA sample sites to the USEPA's StreamCat Dataset; a database of several hundred landscape metrics for all 1:100,000-scale streams and their associated watersheds within the conterminous United States. The StreamCat data provided geospatial indicators of nearby and upstream land use, land cover, climate, and other landscape features for modeling. Nationally, the model correctly predicted the biological condition class of 75% of NRSA sites. Although model evaluations suggested good discrimination among condition classes, we present maps as predicted probabilities of good condition, given upstream and nearby landscape settings. Inversely, the maps can be interpreted as the probability of a stream being in poor condition, given human-related watershed alterations. These predictions are available for download from the USEPA's StreamCat website. Finally, we illustrate how these predictions could be used to prioritize streams for conservation or restoration.


Assuntos
Conservação dos Recursos Naturais/métodos , Invertebrados , Rios , Animais , Ecossistema , Geografia , Modelos Biológicos , Estados Unidos
11.
Environ Monit Assess ; 189(7): 316, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28589457

RESUMO

Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological data sets, there is limited guidance on variable selection methods for RF modeling. Typically, either a preselected set of predictor variables are used or stepwise procedures are employed which iteratively remove variables according to their importance measures. This paper investigates the application of variable selection methods to RF models for predicting probable biological stream condition. Our motivating data set consists of the good/poor condition of n = 1365 stream survey sites from the 2008/2009 National Rivers and Stream Assessment, and a large set (p = 212) of landscape features from the StreamCat data set as potential predictors. We compare two types of RF models: a full variable set model with all 212 predictors and a reduced variable set model selected using a backward elimination approach. We assess model accuracy using RF's internal out-of-bag estimate, and a cross-validation procedure with validation folds external to the variable selection process. We also assess the stability of the spatial predictions generated by the RF models to changes in the number of predictors and argue that model selection needs to consider both accuracy and stability. The results suggest that RF modeling is robust to the inclusion of many variables of moderate to low importance. We found no substantial improvement in cross-validated accuracy as a result of variable reduction. Moreover, the backward elimination procedure tended to select too few variables and exhibited numerous issues such as upwardly biased out-of-bag accuracy estimates and instabilities in the spatial predictions. We use simulations to further support and generalize results from the analysis of real data. A main purpose of this work is to elucidate issues of model selection bias and instability to ecologists interested in using RF to develop predictive models with large environmental data sets.


Assuntos
Ecologia , Monitoramento Ambiental/métodos , Modelos Estatísticos , Humanos , Rios
12.
PNAS Nexus ; 3(1): pgad362, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38213613

RESUMO

Air quality regulations have led to decreased nitrogen (N) and sulfur deposition across the conterminous United States (CONUS) during the last several decades, particularly in the eastern parts. But it is unclear if declining deposition has altered stream N at large scales. We compared watershed N inputs with N chemistry from over 2,000 CONUS streams where deposition was the largest N input to the watershed. Weighted change analysis showed that deposition declined across most watersheds, especially in the Eastern CONUS. Nationally, declining N deposition was not associated with significant large-scale declines in stream nitrate concentration. Instead, significant increases in stream dissolved organic carbon (DOC) and total organic N (TON) were widespread across regions. Possible mechanisms behind these increases include declines in acidity and/or ionic strength drivers, changes in carbon availability, and/or climate variables. Our results also reveal a declining trend of DOC/TON ratio over the entire study period, primarily influenced by the trend in the Eastern region, suggesting the rate of increase in stream TON exceeded the rate of increase in DOC concentration during this period. Our results illustrate the complexity of nutrient cycling that links long-term atmospheric deposition to water quality. More research is needed to understand how increased dissolved organic N could affect aquatic ecosystems and downstream riverine nutrient export.

13.
Front Environ Sci ; 12: 1-19, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516348

RESUMO

Continued large-scale public investment in declining ecosystems depends on demonstrations of "success". While the public conception of "success" often focuses on restoration to a pre-disturbance condition, the scientific community is more likely to measure success in terms of improved ecosystem health. Using a combination of literature review, workshops and expert solicitation we propose a generalized framework to improve ecosystem health in highly altered river basins by reducing ecosystem stressors, enhancing ecosystem processes and increasing ecosystem resilience. We illustrate the use of this framework in the Mississippi-Atchafalaya River Basin (MARB) of the central United States (U.S.), by (i) identifying key stressors related to human activities, and (ii) creating a conceptual ecosystem model relating those stressors to effects on ecosystem structure and processes. As a result of our analysis, we identify a set of landscape-level indicators of ecosystem health, emphasizing leading indicators of stressor removal (e.g., reduced anthropogenic nutrient inputs), increased ecosystem function (e.g., increased water storage in the landscape) and increased resilience (e.g., changes in the percentage of perennial vegetative cover). We suggest that by including these indicators, along with lagging indicators such as direct measurements of water quality, stakeholders will be better able to assess the effectiveness of management actions. For example, if both leading and lagging indicators show improvement over time, then management actions are on track to attain desired ecosystem condition. If, however, leading indicators are not improving or even declining, then fundamental challenges to ecosystem health remain to be addressed and failure to address these will ultimately lead to declines in lagging indicators such as water quality. Although our model and indicators are specific to the MARB, we believe that the generalized framework and the process of model and indicator development will be valuable in an array of altered river basins.

14.
Ecosphere ; 14(1)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36762202

RESUMO

River and stream conservation programs have historically focused on a single spatial scale, for example, a watershed or stream site. Recently, the use of landscape information (e.g., land use and land cover) at multiple spatial scales and over large spatial extents has highlighted the importance of incorporating a landscape perspective into stream protection and restoration activities. Previously, we developed a novel framework that links information about watershed-, catchment-, and reach-scale integrity with stream biological condition using scatterplots and a landscape integrity map. Here we examined an application of this approach for streams in urban and other settings in King County, Washington State, United States, where we related stream macroinvertebrate condition to two indices of landscape integrity, the US Environmental Protection Agency's (USEPA) nationally available Index of Watershed Integrity (IWI) and Index of Catchment Integrity (ICI). We generated a scatterplot of IWI versus ICI for sample sites, where points represented site macroinvertebrate condition from poor to good. The same data were also visualized as a landscape integrity map that displayed catchments of King County according to the level of watershed and catchment integrity (high or low IWI/ICI). Almost three-quarters of poor-condition sites were associated with high-integrity watersheds and catchments (i.e., underperforming sites), which suggested that either one or both national indicators were insufficient for this area, and that sites underperformed because of local-scale factors. In response, we used a catchment-scale indicator related to forest condition (PctForestCat) after examining several GIS-based dispersal indicators from the National Hydrography Dataset and other candidates from the USEPA's StreamCat dataset. We then compared the results of the scatterplots and maps based on the current and original analyses and found that many of the sites previously classified as underperforming now performed as expected, that is, they were poor-condition sites in poor-condition catchments. This analysis demonstrates how results based on a national dataset can be improved by developing an alternative that represents regionally important stressors. The methods used to develop an effective landscape indicator based on StreamCat datasets, and the utility of the multiscale approach, could provide important tools for prioritizing, optimizing, and communicating stream conservation actions.

15.
Sci Total Environ ; 869: 161784, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36702268

RESUMO

Harmful algal blooms caused by cyanobacteria are a threat to global water resources and human health. Satellite remote sensing has vastly expanded spatial and temporal data on lake cyanobacteria, yet there is still acute need for tools that identify which waterbodies are at-risk for toxic cyanobacterial blooms. Algal toxins cannot be directly detected through imagery but monitoring toxins associated with cyanobacterial blooms is critical for assessing risk to the environment, animals, and people. The objective of this study is to address this need by developing an approach relating satellite imagery on cyanobacteria with field surveys to model the risk of toxic blooms among lakes. The Medium Resolution Imaging Spectrometer (MERIS) and United States (US) National Lakes Assessments are leveraged to model the probability among lakes of exceeding lower and higher demonstration thresholds for microcystin toxin, cyanobacteria, and chlorophyll a. By leveraging the large spatial variation among lakes using two national-scale data sources, rather than focusing on temporal variability, this approach avoids many of the previous challenges in relating satellite imagery to cyanotoxins. For every satellite-derived lake-level Cyanobacteria Index (CI_cyano) increase of 0.01 CI_cyano/km2, the odds of exceeding six bloom thresholds increased by 23-54 %. When the models were applied to the 2192 satellite monitored lakes in the US, the number of lakes identified with ≥75 % probability of exceeding the thresholds included as many as 335 lakes for the lower thresholds and 70 lakes for the higher thresholds, respectively. For microcystin, the models identified 162 and 70 lakes with ≥75 % probability of exceeding the lower (0.2 µg/L) and higher (1.0 µg/L) thresholds, respectively. This approach represents a critical advancement in using satellite imagery and field data to identify lakes at risk for developing toxic cyanobacteria blooms. Such models can help translate satellite data to aid water quality monitoring and management.


Assuntos
Cianobactérias , Lagos , Estados Unidos , Humanos , Lagos/microbiologia , Imagens de Satélites , Clorofila A , Microcistinas , Monitoramento Ambiental/métodos , Proliferação Nociva de Algas
16.
Nat Water ; 1: 370-380, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37389401

RESUMO

Wetland hydrologic connections to downstream waters influence stream water quality. However, no systematic approach for characterizing this connectivity exists. Here using physical principles, we categorized conterminous US freshwater wetlands into four hydrologic connectivity classes based on stream contact and flowpath depth to the nearest stream: riparian, non-riparian shallow, non-riparian mid-depth and non-riparian deep. These classes were heterogeneously distributed over the conterminous United States; for example, riparian dominated the south-eastern and Gulf coasts, while non-riparian deep dominated the Upper Midwest and High Plains. Analysis of a national stream dataset indicated acidification and organic matter brownification increased with connectivity. Eutrophication and sedimentation decreased with wetland area but did not respond to connectivity. This classification advances our mechanistic understanding of wetland influences on water quality nationally and could be applied globally.

17.
Ecosystems ; 26: 1-28, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37534325

RESUMO

Watershed resilience is the ability of a watershed to maintain its characteristic system state while concurrently resisting, adapting to, and reorganizing after hydrological (for example, drought, flooding) or biogeochemical (for example, excessive nutrient) disturbances. Vulnerable waters include non-floodplain wetlands and headwater streams, abundant watershed components representing the most distal extent of the freshwater aquatic network. Vulnerable waters are hydrologically dynamic and biogeochemically reactive aquatic systems, storing, processing, and releasing water and entrained (that is, dissolved and particulate) materials along expanding and contracting aquatic networks. The hydrological and biogeochemical functions emerging from these processes affect the magnitude, frequency, timing, duration, storage, and rate of change of material and energy fluxes among watershed components and to downstream waters, thereby maintaining watershed states and imparting watershed resilience. We present here a conceptual framework for understanding how vulnerable waters confer watershed resilience. We demonstrate how individual and cumulative vulnerable-water modifications (for example, reduced extent, altered connectivity) affect watershed-scale hydrological and biogeochemical disturbance response and recovery, which decreases watershed resilience and can trigger transitions across thresholds to alternative watershed states (for example, states conducive to increased flood frequency or nutrient concentrations). We subsequently describe how resilient watersheds require spatial heterogeneity and temporal variability in hydrological and biogeochemical interactions between terrestrial systems and down-gradient waters, which necessitates attention to the conservation and restoration of vulnerable waters and their downstream connectivity gradients. To conclude, we provide actionable principles for resilient watersheds and articulate research needs to further watershed resilience science and vulnerable-water management.

18.
Sci Total Environ ; 722: 137661, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32192969

RESUMO

Excess nitrate in drinking water is a human health concern, especially for young children. Public drinking water systems in violation of the 10 mg nitrate-N/L maximum contaminant level (MCL) must be reported in EPA's Safe Drinking Water Information System (SDWIS). We used SDWIS data with random forest modeling to examine the drivers of nitrate violations across the conterminous U.S. and to predict where public water systems are at risk of exceeding the nitrate MCL. As explanatory variables, we used land cover, nitrogen inputs, soil/hydrogeology, and climate variables. While we looked at the role of nitrate treatment in separate analyses, we did not include treatment as a factor in the final models, due to incomplete information in SDWIS. For groundwater (GW) systems, a classification model correctly classified 79% of catchments in violation and a regression model explained 43% of the variation in nitrate concentrations above the MCL. The most important variables in the GW classification model were % cropland, agricultural drainage, irrigation-to-precipitation ratio, nitrogen surplus, and surplus precipitation. Regions predicted to have risk for nitrate violations in GW were the Central California Valley, parts of Washington, Idaho, the Great Plains, Piedmont of Pennsylvania and Coastal Plains of Delaware, and regions of Wisconsin, Iowa, and Minnesota. For surface water (SW) systems, a classification model correctly classified 90% of catchments and a regression model explained 52% of the variation in nitrate concentration. The variables most important for the SW classification model were largely hydroclimatic variables including surplus precipitation, irrigation-to-precipitation ratio, and % shrubland. Areas at greatest risk for SW nitrate violations were generally in the non-mountainous west and southwest. Identifying the areas with possible risk for future violations and potential drivers of nitrate violations across U.S. can inform decisions on how source water protection and other management options could best protect drinking water.


Assuntos
Água Potável/química , Nitratos , Estados Unidos , Poluentes Químicos da Água , Abastecimento de Água
19.
Sci Total Environ ; 651(Pt 2): 2615-2630, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30340196

RESUMO

Watersheds provide a range of services valued by society, incorporating biotic and abiotic functions within their boundaries. Recently, an operational definition of watershed integrity was applied and indices of watershed integrity (IWI) and catchment integrity (ICI) were developed and mapped for the conterminous United States. However, these indices were originally derived using equally-weighted first-order approximations of relationships between anthropogenic stressors (obtained from the U.S. EPA's StreamCat dataset) and six watershed functions. In addition, the original calculations of the IWI and ICI did not standardize metrics across these differing scales, resulting in IWI and ICI values that are not directly comparable. We provide an example of how to iteratively update the stressor-watershed function relationships using random forest models and a nationwide response metric representative of one of the six watershed functions. Specifically, we focused on the chemical regulation function (CHEM) of IWI and ICI by relating a composite metric of chemical water quality from 1914 samples to land use metrics explicit to CHEM to refine the nature of these relationships (e.g., non-linear versus linear). The rate of nitrogen fertilizer, agricultural land use, and urban land use were found to be the three most important stressors predicting the national water quality response metric. Revision of CHEM values improved the prediction of several regional- to national-scale water quality indicators. In all cases, exponential decay curves replaced the original negative linear relationship for CHEM. Therefore, the original IWI and ICI values are probably over-estimates of the actual integrity of the Nation's watersheds and catchments. With these revisions, we provide updated national maps of IWI and ICI. The methods outlined here can be implemented iteratively as more and better data become available for all six of the watershed functions to elevate the accuracy and applicability of these indices to various land management issues.

20.
Freshw Sci ; 37: 208-221, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29963332

RESUMO

Natural and human-related landscape features influence the ecology and water quality of lakes. Summarizing these features in a hydrologically meaningful way is critical to understanding and managing lake ecosystems. Such summaries are often done by delineating watershed boundaries of individual lakes. However, many technical challenges are associated with delineating hundreds or thousands of lake watersheds at broad spatial extents. These challenges can limit the application of analyses and models to new, unsampled locations. We present the Lake-Catchment (LakeCat) Dataset (https://www.epa.gov/national-aquatic-resource-surveys/lakecat) of watershed features for 378,088 lakes within the conterminous USA. We describe the methods we used to: 1) delineate lake catchments, 2) hydrologically connect nested lake catchments, and 3) generate several hundred watershed-level metrics that summarize both natural (e.g., soils, geology, climate, and land cover) and anthropogenic (e.g., urbanization, agriculture, and mines) features. We illustrate how this data set can be used with a random forest model to predict the probability of lake eutrophication by combining LakeCat with data from US Environmental Protection Agency's National Lakes Assessment (NLA). This model correctly predicted the trophic state of 72% of NLA lakes, and we applied the model to predict the probability of eutrophication at 297,071 unsampled lakes across the conterminous USA. The large suite of LakeCat metrics could be used to improve analyses of lakes at broad spatial extents, improve the applicability of analyses to unsampled lakes, and ultimately improve the management of these important ecosystems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa