Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 51(6): 997-1011.e7, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31851905

RESUMO

Toll-like receptor (TLR) activation induces inflammatory responses in macrophages by activating temporally defined transcriptional cascades. Whether concurrent changes in the cellular metabolism that occur upon TLR activation influence the quality of the transcriptional responses remains unknown. Here, we investigated how macrophages adopt their metabolism early after activation to regulate TLR-inducible gene induction. Shortly after TLR4 activation, macrophages increased glycolysis and tricarboxylic acid (TCA) cycle volume. Metabolic tracing studies revealed that TLR signaling redirected metabolic fluxes to generate acetyl-Coenzyme A (CoA) from glucose resulting in augmented histone acetylation. Signaling through the adaptor proteins MyD88 and TRIF resulted in activation of ATP-citrate lyase, which in turn facilitated the induction of distinct LPS-inducible gene sets. We postulate that metabolic licensing of histone acetylation provides another layer of control that serves to fine-tune transcriptional responses downstream of TLR activation. Our work highlights the potential of targeting the metabolic-epigenetic axis in inflammatory settings.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Acetilcoenzima A/metabolismo , Histonas/metabolismo , Macrófagos/metabolismo , Receptor 4 Toll-Like/metabolismo , Acetilação , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Ciclo do Ácido Cítrico/fisiologia , Glicólise/fisiologia , Humanos , Lipopolissacarídeos/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Transcrição Gênica/genética
2.
Nature ; 609(7928): 801-807, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35901960

RESUMO

Anorexia and fasting are host adaptations to acute infection, and induce a metabolic switch towards ketogenesis and the production of ketone bodies, including ß-hydroxybutyrate (BHB)1-6. However, whether ketogenesis metabolically influences the immune response in pulmonary infections remains unclear. Here we show that the production of BHB is impaired in individuals with SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) but not in those with  influenza-induced ARDS. We found that BHB promotes both the survival of and the production of interferon-γ by CD4+ T cells. Applying a metabolic-tracing analysis, we established that BHB provides an alternative carbon source to fuel oxidative phosphorylation (OXPHOS) and the production of bioenergetic amino acids and glutathione, which is important for maintaining the redox balance. T cells from patients with SARS-CoV-2-induced ARDS were exhausted and skewed towards glycolysis, but could be metabolically reprogrammed by BHB to perform OXPHOS, thereby increasing their functionality. Finally, we show in mice that a ketogenic diet and the delivery of BHB as a ketone ester drink restores CD4+ T cell metabolism and function in severe respiratory infections, ultimately reducing the mortality of mice infected with SARS-CoV-2. Altogether, our data reveal that BHB is an alternative source of carbon that promotes T cell responses in pulmonary viral infections, and highlight impaired ketogenesis as a potential confounding factor in severe COVID-19.


Assuntos
COVID-19 , Metabolismo Energético , Cetonas , Síndrome do Desconforto Respiratório , SARS-CoV-2 , Linfócitos T , Ácido 3-Hidroxibutírico/biossíntese , Ácido 3-Hidroxibutírico/metabolismo , Aminoácidos/biossíntese , Aminoácidos/metabolismo , Animais , COVID-19/complicações , COVID-19/imunologia , COVID-19/patologia , Dieta Cetogênica , Ésteres/metabolismo , Glutationa/biossíntese , Glutationa/metabolismo , Glicólise , Interferon gama/biossíntese , Corpos Cetônicos/metabolismo , Cetonas/metabolismo , Camundongos , Orthomyxoviridae/patogenicidade , Oxirredução , Fosforilação Oxidativa , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2/patogenicidade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia
3.
Immunity ; 46(4): 675-689, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28423341

RESUMO

Activated T cells produce reactive oxygen species (ROS), which trigger the antioxidative glutathione (GSH) response necessary to buffer rising ROS and prevent cellular damage. We report that GSH is essential for T cell effector functions through its regulation of metabolic activity. Conditional gene targeting of the catalytic subunit of glutamate cysteine ligase (Gclc) blocked GSH production specifically in murine T cells. Gclc-deficient T cells initially underwent normal activation but could not meet their increased energy and biosynthetic requirements. GSH deficiency compromised the activation of mammalian target of rapamycin-1 (mTOR) and expression of NFAT and Myc transcription factors, abrogating the energy utilization and Myc-dependent metabolic reprogramming that allows activated T cells to switch to glycolysis and glutaminolysis. In vivo, T-cell-specific ablation of murine Gclc prevented autoimmune disease but blocked antiviral defense. The antioxidative GSH pathway thus plays an unexpected role in metabolic integration and reprogramming during inflammatory T cell responses.


Assuntos
Glutamato-Cisteína Ligase/deficiência , Glutationa/metabolismo , Inflamação/metabolismo , Linfócitos T/metabolismo , Animais , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Metabolismo Energético/genética , Glutamato-Cisteína Ligase/genética , Glutamina/metabolismo , Glicólise , Immunoblotting , Inflamação/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição NFATC/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo
4.
J Immunol ; 212(1): 7-11, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038390

RESUMO

The 2'3'-cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of IFN genes (STING) pathway can sense infection and cellular stress by detecting cytosolic DNA. Upon ligand binding, cGAS produces the cyclic dinucleotide messenger cGAMP, which triggers its receptor STING. Active STING initiates gene transcription through the transcription factors IFN regulatory factor 3 (IRF3) and NF-κB and induces autophagy, but whether STING can cause changes in the metabolism of macrophages is unknown. In this study, we report that STING signaling activates ATP-citrate lyase (ACLY) by phosphorylation in human macrophages. Using genetic and pharmacologic perturbation, we show that STING targets ACLY via its prime downstream signaling effector TANK (TRAF family member-associated NF-κB activator)-binding kinase 1 (TBK1). We further identify that TBK1 alters cellular metabolism upon cGAMP treatment. Our results suggest that STING-mediated metabolic reprogramming adjusts the cellular response to DNA sensing in addition to transcription factor activation and autophagy induction.


Assuntos
NF-kappa B , Proteínas Serina-Treonina Quinases , Humanos , ATP Citrato (pro-S)-Liase/metabolismo , DNA , Fator Regulador 3 de Interferon/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , NF-kappa B/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
5.
PLoS Biol ; 20(11): e3001351, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36342970

RESUMO

Pyrin is a cytosolic immune sensor that nucleates an inflammasome in response to inhibition of RhoA by bacterial virulence factors, triggering the release of inflammatory cytokines, including IL-1ß. Gain-of-function mutations in the MEFV gene encoding Pyrin cause autoinflammatory disorders, such as familial Mediterranean fever (FMF) and Pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND). To precisely define the role of Pyrin in pathogen detection in human immune cells, we compared initiation and regulation of the Pyrin inflammasome response in monocyte-derived macrophages (hMDM). Unlike human monocytes and murine macrophages, we determined that hMDM failed to activate Pyrin in response to known Pyrin activators Clostridioides difficile (C. difficile) toxins A or B (TcdA or TcdB), as well as the bile acid analogue BAA-473. The Pyrin inflammasome response was enabled in hMDM by prolonged priming with either LPS or type I or II interferons and required an increase in Pyrin expression. Notably, FMF mutations lifted the requirement for prolonged priming for Pyrin activation in hMDM, enabling Pyrin activation in the absence of additional inflammatory signals. Unexpectedly, in the absence of a Pyrin response, we found that TcdB activated the NLRP3 inflammasome in hMDM. These data demonstrate that regulation of Pyrin activation in hMDM diverges from monocytes and highlights its dysregulation in FMF.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Febre Familiar do Mediterrâneo , Humanos , Camundongos , Animais , Pirina/genética , Pirina/metabolismo , Febre Familiar do Mediterrâneo/genética , Febre Familiar do Mediterrâneo/metabolismo , Inflamassomos/metabolismo , Mutação , Macrófagos/metabolismo
6.
EMBO Rep ; 24(9): e57372, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37497662

RESUMO

How cells coordinate their metabolism with division determines the rate of cell proliferation. Dynamic patterns of metabolite synthesis during the cell cycle are unexplored. We report the first isotope tracing analysis in synchronous, growing budding yeast cells. Synthesis of leucine, a branched-chain amino acid (BCAA), increases through the G1 phase of the cell cycle, peaking later during DNA replication. Cells lacking Bat1, a mitochondrial aminotransferase that synthesizes BCAAs, grow slower, are smaller, and are delayed in the G1 phase, phenocopying cells in which the growth-promoting kinase complex TORC1 is moderately inhibited. Loss of Bat1 lowers the levels of BCAAs and reduces TORC1 activity. Exogenous provision of valine and, to a lesser extent, leucine to cells lacking Bat1 promotes cell division. Valine addition also increases TORC1 activity. In wild-type cells, TORC1 activity is dynamic in the cell cycle, starting low in early G1 but increasing later in the cell cycle. These results suggest a link between BCAA synthesis from glucose to TORC1 activation in the G1 phase of the cell cycle.


Assuntos
Aminoácidos , Saccharomyces cerevisiae , Ciclo Celular , Aminoácidos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Leucina/biossíntese , Glucose/metabolismo , Fase G1
7.
Nature ; 560(7718): E28, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30069041

RESUMO

In Extended Data Fig. 1a of this Letter, the flow cytometry plot depicting the surface phenotype of AML sample DD08 was a duplicate of the plot for AML sample DD06. Supplementary Data 4 has been added to the Supplementary Information of the original Letter to clarify the proteome data acquisition and presentation. The original Letter has been corrected online.

8.
Mov Disord ; 38(4): 697-702, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36717366

RESUMO

BACKGROUND: Alterations in mitochondrial dysfunction have been implicated in the pathogenesis of Parkinson's disease (PD). Mitochondrial energy production is linked to glucose metabolism, and diabetes is associated with PD. However, studies investigating glucose metabolism in vivo in genetically stratified PD patients and controls have yet to be performed. OBJECTIVES: The objectives of this study were to explore glucose production, gluconeogenesis, and the contribution of gluconeogenesis to glucose production in idiopathic and PRKN PD compared with healthy controls with state-of-the-art biochemical methods. METHODS: We applied a dried-blood sampling/gas chromatography/mass spectrometry approach to monitor fluxes in the Cori cycle in vivo. RESULTS: The contribution of gluconeogenesis to total glucose production is increased in idiopathic PD patients (n = 33), but not in biallelic PRKN mutation carriers (n = 5) compared with healthy controls (n = 13). CONCLUSIONS: We provide first-time in vivo evidence for alterations in glucose metabolism in idiopathic PD, in keeping with the epidemiological evidence for an association between PD and diabetes. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Humanos , Mitocôndrias/metabolismo , Glucose/metabolismo
9.
Nature ; 551(7680): 384-388, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144447

RESUMO

The branched-chain amino acid (BCAA) pathway and high levels of BCAA transaminase 1 (BCAT1) have recently been associated with aggressiveness in several cancer entities. However, the mechanistic role of BCAT1 in this process remains largely uncertain. Here, by performing high-resolution proteomic analysis of human acute myeloid leukaemia (AML) stem-cell and non-stem-cell populations, we find the BCAA pathway enriched and BCAT1 protein and transcripts overexpressed in leukaemia stem cells. We show that BCAT1, which transfers α-amino groups from BCAAs to α-ketoglutarate (αKG), is a critical regulator of intracellular αKG homeostasis. Further to its role in the tricarboxylic acid cycle, αKG is an essential cofactor for αKG-dependent dioxygenases such as Egl-9 family hypoxia inducible factor 1 (EGLN1) and the ten-eleven translocation (TET) family of DNA demethylases. Knockdown of BCAT1 in leukaemia cells caused accumulation of αKG, leading to EGLN1-mediated HIF1α protein degradation. This resulted in a growth and survival defect and abrogated leukaemia-initiating potential. By contrast, overexpression of BCAT1 in leukaemia cells decreased intracellular αKG levels and caused DNA hypermethylation through altered TET activity. AML with high levels of BCAT1 (BCAT1high) displayed a DNA hypermethylation phenotype similar to cases carrying a mutant isocitrate dehydrogenase (IDHmut), in which TET2 is inhibited by the oncometabolite 2-hydroxyglutarate. High levels of BCAT1 strongly correlate with shorter overall survival in IDHWTTET2WT, but not IDHmut or TET2mut AML. Gene sets characteristic for IDHmut AML were enriched in samples from patients with an IDHWTTET2WTBCAT1high status. BCAT1high AML showed robust enrichment for leukaemia stem-cell signatures, and paired sample analysis showed a significant increase in BCAT1 levels upon disease relapse. In summary, by limiting intracellular αKG, BCAT1 links BCAA catabolism to HIF1α stability and regulation of the epigenomic landscape, mimicking the effects of IDH mutations. Our results suggest the BCAA-BCAT1-αKG pathway as a therapeutic target to compromise leukaemia stem-cell function in patients with IDHWTTET2WT AML.


Assuntos
Metilação de DNA , Isocitrato Desidrogenase/genética , Ácidos Cetoglutáricos/metabolismo , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/metabolismo , Transaminases/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Proliferação de Células , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Epistasia Genética , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Isocitrato Desidrogenase/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/metabolismo , Camundongos , Terapia de Alvo Molecular , Mutação , Células-Tronco Neoplásicas/patologia , Prognóstico , Proteólise , Proteômica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transaminases/deficiência , Transaminases/genética
10.
PLoS Pathog ; 16(3): e1008448, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32208465

RESUMO

The composition of the intestinal microbiota influences the outcome of enteric infections in human and mice. However, the role of specific members and their metabolites contributing to disease severity is largely unknown. Using isogenic mouse lines harboring distinct microbiota communities, we observed highly variable disease kinetics of enteric Citrobacter rodentium colonization after infection. Transfer of communities from susceptible and resistant mice into germ-free mice verified that the varying susceptibilities are determined by microbiota composition. The strongest differences in colonization were observed in the cecum and could be maintained in vitro by coculturing cecal bacteria with C. rodentium. Cohousing of animals as well as the transfer of cultivable bacteria from resistant to susceptible mice led to variable outcomes in the recipient mice. Microbiome analysis revealed that a higher abundance of butyrate-producing bacteria was associated with the resistant phenotype. Quantification of short-chain fatty acid (SCFA) levels before and after infection revealed increased concentrations of acetate, butyrate and propionate in mice with delayed colonization. Addition of physiological concentrations of butyrate, but not of acetate and/or propionate strongly impaired growth of C. rodentium in vitro. In vivo supplementation of susceptible, antibiotic-treated and germ-free mice with butyrate led to the same level of protection, notably only when cecal butyrate concentration reached a concentration higher than 50 nmol/mg indicating a critical threshold for protection. In the recent years, commensal-derived primary and secondary bacterial metabolites emerged as potent modulators of hosts susceptibility to infection. Our results provide evidence that variations in SCFA production in mice fed fibre-rich chow-based diets modulate susceptibility to colonization with Enterobacteriaceae not only in antibiotic-disturbed ecosystems but even in undisturbed microbial communities. These findings emphasise the need for microbiota normalization across laboratory mouse lines for infection experiments with the model-pathogen C. rodentium independent of investigations of diet and antibiotic usage.


Assuntos
Citrobacter rodentium/crescimento & desenvolvimento , Infecções por Enterobacteriaceae/metabolismo , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal , Animais , Camundongos
11.
Am J Physiol Cell Physiol ; 321(6): C1070-C1081, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34705584

RESUMO

Mitochondria are considered to be the powerhouse of the cell. Normal functioning of the mitochondria is not only essential for cellular energy production but also for several immunomodulatory processes. Macrophages operate in metabolic niches and rely on rapid adaptation to specific metabolic conditions such as hypoxia, nutrient limitations, or reactive oxygen species to neutralize pathogens. In this regard, the fast reprogramming of mitochondrial metabolism is indispensable to provide the cells with the necessary energy and intermediates to efficiently mount the inflammatory response. Moreover, mitochondria act as a physical scaffold for several proteins involved in immune signaling cascades and their dysfunction is immediately associated with a dampened immune response. In this review, we put special focus on mitochondrial function in macrophages and highlight how mitochondrial metabolism is involved in macrophage activation.


Assuntos
Macrófagos/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Metabolismo Energético/fisiologia , Humanos , Transdução de Sinais/fisiologia
12.
Bioinformatics ; 36(12): 3925-3926, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32324861

RESUMO

SUMMARY: Mass isotopolome analysis for mode of action identification (MIAMI) combines the strengths of targeted and non-targeted approaches to detect metabolic flux changes in gas chromatography/mass spectrometry datasets. Based on stable isotope labeling experiments, MIAMI determines a mass isotopomer distribution-based (MID) similarity network and incorporates the data into metabolic reference networks. By identifying MID variations of all labeled compounds between different conditions, targets of metabolic changes can be detected. AVAILABILITY AND IMPLEMENTATION: We implemented the data processing in C++17 with Qt5 back-end using MetaboliteDetector and NTFD libraries. The data visualization is implemented as web application. Executable binaries and visualization are freely available for Linux operating systems, the source code is licensed under General Public License version 3.


Assuntos
Redes e Vias Metabólicas , Software , Isótopos de Carbono , Cromatografia Gasosa-Espectrometria de Massas , Marcação por Isótopo
14.
J Biol Chem ; 294(44): 16095-16108, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31511322

RESUMO

The low-calorie sweetener erythritol is endogenously produced from glucose through the pentose phosphate pathway in humans. Erythritol is of medical interest because elevated plasma levels of this polyol are predictive for visceral adiposity gain and development of type 2 diabetes. However, the mechanisms behind these associations remain unknown because the erythritol biosynthesis pathway, particularly the enzyme catalyzing the final step of erythritol synthesis (reduction of erythrose to erythritol), is not characterized. In this study, we purified two enzymes from rabbit liver capable of catalyzing the conversion of erythrose to erythritol: alcohol dehydrogenase 1 (ADH1) and sorbitol dehydrogenase (SORD). Both recombinant human ADH1 and SORD reduce erythrose to erythritol, using NADPH as a co-factor, and cell culture studies indicate that this activity is primarily NADPH-dependent. We found that ADH1 variants vary markedly in both their affinity for erythrose and their catalytic capacity (turnover number). Interestingly, the recombinant protein produced from the ADH1B2 variant, common in Asian populations, is not active when NADPH is used as a co-factor in vitro We also confirmed SORD contributes to intracellular erythritol production in human A549 lung cancer cells, where ADH1 is minimally expressed. In summary, human ADH1 and SORD catalyze the conversion of erythrose to erythritol, pointing to novel roles for two dehydrogenase proteins in human glucose metabolism that may contribute to individual responses to diet. Proteomics data are available via ProteomeXchange with identifier PXD015178.


Assuntos
Álcool Desidrogenase/metabolismo , Eritritol/biossíntese , L-Iditol 2-Desidrogenase/metabolismo , Células A549 , Animais , Humanos , Fígado/enzimologia , Fígado/metabolismo , Coelhos , Tetroses/metabolismo
15.
Mov Disord ; 35(12): 2201-2210, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32853481

RESUMO

BACKGROUND: Alterations in the GBA gene (NM_000157.3) are the most important genetic risk factor for Parkinson's disease (PD). Biallelic GBA mutations cause the lysosomal storage disorder Gaucher's disease. The GBA variants p.E365K and p.T408M are associated with PD but not with Gaucher's disease. The pathophysiological role of these variants needs to be further explored. OBJECTIVE: This study analyzed clinical, neuropsychological, metabolic, and neuroimaging phenotypes of patients with PD carrying the GBA variants p.E365K and p.T408M. METHODS: GBA was sequenced in 56 patients with mid-stage PD. Carriers of GBA variants were compared with noncarriers regarding clinical history and symptoms, neuropsychological features, metabolomics, and multimodal neuroimaging. Blood plasma gas chromatography coupled to mass spectrometry, 6-[18 F]fluoro-L-Dopa positron emission tomography (PET), [18 F]fluorodeoxyglucose PET, and resting-state functional magnetic resonance imaging were performed. RESULTS: Sequence analysis detected 13 heterozygous GBA variant carriers (7 with p.E365K, 6 with p.T408M). One patient carried a GBA mutation (p.N409S) and was excluded. Clinical history and symptoms were not significantly different between groups. Global cognitive performance was lower in variant carriers. Metabolomic group differences were suggestive of more severe PD-related alterations in carriers versus noncarriers. Both PET scans showed signs of a more advanced disease; [18 F]fluorodeoxyglucose PET and functional magnetic resonance imaging showed similarities with Lewy body dementia and PD dementia in carriers. CONCLUSIONS: This is the first study to comprehensively assess (neuro-)biological phenotypes of GBA variants in PD. Metabolomics and neuroimaging detected more significant group differences than clinical and behavioral evaluation. These alterations could be promising to monitor effects of disease-modifying treatments targeting glucocerebrosidase metabolism. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Glucosilceramidase/genética , Humanos , Metabolômica , Mutação/genética , Neuroimagem , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/genética , Fenótipo
16.
Proc Natl Acad Sci U S A ; 114(21): E4233-E4240, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28484010

RESUMO

Metabolomic markers associated with incident central adiposity gain were investigated in young adults. In a 9-mo prospective study of university freshmen (n = 264). Blood samples and anthropometry measurements were collected in the first 3 d on campus and at the end of the year. Plasma from individuals was pooled by phenotype [incident central adiposity, stable adiposity, baseline hemoglobin A1c (HbA1c) > 5.05%, HbA1c < 4.92%] and assayed using GC-MS, chromatograms were analyzed using MetaboliteDetector software, and normalized metabolite levels were compared using Welch's t test. Assays were repeated using freshly prepared pools, and statistically significant metabolites were quantified in a targeted GC-MS approach. Isotope tracer studies were performed to determine if the potential marker was an endogenous human metabolite in men and in whole blood. Participants with incident central adiposity gain had statistically significantly higher blood erythritol [P < 0.001, false discovery rate (FDR) = 0.0435], and the targeted assay revealed 15-fold [95% confidence interval (CI): 13.27, 16.25] higher blood erythritol compared with participants with stable adiposity. Participants with baseline HbA1c > 5.05% had 21-fold (95% CI: 19.84, 21.41) higher blood erythritol compared with participants with lower HbA1c (P < 0.001, FDR = 0.00016). Erythritol was shown to be synthesized endogenously from glucose via the pentose-phosphate pathway (PPP) in stable isotope-assisted ex vivo blood incubation experiments and through in vivo conversion of erythritol to erythronate in stable isotope-assisted dried blood spot experiments. Therefore, endogenous production of erythritol from glucose may contribute to the association between erythritol and obesity observed in young adults.


Assuntos
Adiposidade/fisiologia , Eritritol/sangue , Eritritol/metabolismo , Via de Pentose Fosfato/fisiologia , Aumento de Peso/fisiologia , Adolescente , Adulto , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Glucose/metabolismo , Hemoglobinas Glicadas/metabolismo , Humanos , Masculino , Metabolômica , Obesidade/patologia , Estudos Prospectivos , Estudantes , Universidades , Adulto Jovem
17.
FASEB J ; 32(10): 5447-5458, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29718708

RESUMO

Health has been defined as the capability of the organism to adapt to challenges. In this study, we tested to what extent comprehensively phenotyped individuals reveal differences in metabolic responses to a standardized mixed meal tolerance test (MMTT) and how these responses change when individuals experience moderate weight loss. Metabolome analysis was used in 70 healthy individuals. with profiling of ∼300 plasma metabolites during an MMTT over 8 h. Multivariate analysis of plasma markers of fatty acid catabolism identified 2 distinct metabotype clusters (A and B). Individuals from metabotype B showed slower glucose clearance, had increased intra-abdominal adipose tissue mass and higher hepatic lipid levels when compared with individuals from metabotype A. An NMR-based urine analysis revealed that these individuals also to have a less healthy dietary pattern. After a weight loss of ∼5.6 kg over 12 wk, only the subjects from metabotype B showed positive changes in the glycemic response during the MMTT and in markers of metabolic diseases. Our study in healthy individuals demonstrates that more comprehensive phenotyping can reveal discrete metabotypes with different outcomes in a dietary intervention and that markers of lipid catabolism in plasma could allow early detection of the metabolic syndrome.-Fiamoncini, J., Rundle, M., Gibbons, H., Thomas, E. L., Geillinger-Kästle, K., Bunzel, D., Trezzi, J.-P., Kiselova-Kaneva, Y., Wopereis, S., Wahrheit, J., Kulling, S. E., Hiller, K., Sonntag, D., Ivanova, D., van Ommen, B., Frost, G., Brennan, L., Bell, J. Daniel, H. Plasma metabolome analysis identifies distinct human metabotypes in the postprandial state with different susceptibility to weight loss-mediated metabolic improvements.


Assuntos
Metaboloma , Período Pós-Prandial , Redução de Peso , Feminino , Humanos , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/diagnóstico , Pessoa de Meia-Idade
18.
EMBO Rep ; 18(12): 2172-2185, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29066459

RESUMO

Elevated amino acid catabolism is common to many cancers. Here, we show that glioblastoma are excreting large amounts of branched-chain ketoacids (BCKAs), metabolites of branched-chain amino acid (BCAA) catabolism. We show that efflux of BCKAs, as well as pyruvate, is mediated by the monocarboxylate transporter 1 (MCT1) in glioblastoma. MCT1 locates in close proximity to BCKA-generating branched-chain amino acid transaminase 1, suggesting possible functional interaction of the proteins. Using in vitro models, we demonstrate that tumor-excreted BCKAs can be taken up and re-aminated to BCAAs by tumor-associated macrophages. Furthermore, exposure to BCKAs reduced the phagocytic activity of macrophages. This study provides further evidence for the eminent role of BCAA catabolism in glioblastoma by demonstrating that tumor-excreted BCKAs might have a direct role in tumor immune suppression. Our data further suggest that the anti-proliferative effects of MCT1 knockdown observed by others might be related to the blocked excretion of BCKAs.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Glioblastoma/fisiopatologia , Macrófagos/fisiologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Transporte Biológico , Contagem de Células , Linhagem Celular Tumoral , Glioblastoma/imunologia , Humanos , Técnicas In Vitro , Macrófagos/imunologia , Macrófagos/patologia , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/deficiência , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Fagocitose , Fenótipo , Ácido Pirúvico/metabolismo , Simportadores/antagonistas & inibidores , Simportadores/genética , Transaminases
19.
Cell Mol Life Sci ; 75(12): 2093-2109, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29502308

RESUMO

In the last decade, metabolism has been recognized as a major determinant of immunological processes. During an inflammatory response, macrophages undergo striking changes in their metabolism. This metabolic reprogramming is governed by a complex interplay between metabolic enzymes and metabolites of different pathways and represents the basis for proper macrophage function. It is now evident that these changes go far beyond the well-known Warburg effect and the perturbation of metabolic targets is being investigated as a means to treat infections and auto-immune diseases. In the present review, we will aim to provide an overview of the metabolic responses during proinflammatory macrophage activation and show how these changes modulate the immune response.


Assuntos
Inflamação/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Animais , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/metabolismo , Metabolismo Energético , Glicólise , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Redes e Vias Metabólicas , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Succinatos/imunologia , Succinatos/metabolismo , Ácido Succínico/imunologia , Ácido Succínico/metabolismo
20.
PLoS Genet ; 12(3): e1005931, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26978032

RESUMO

Cancer cells often rely on glycolysis to obtain energy and support anabolic growth. Several studies showed that glycolytic cells are susceptible to cell death when subjected to low glucose availability or to lack of glucose. However, some cancer cells, including glycolytic ones, can efficiently acquire higher tolerance to glucose depletion, leading to their survival and aggressiveness. Although increased resistance to glucose starvation has been shown to be a consequence of signaling pathways and compensatory metabolic routes activation, the full repertoire of the underlying molecular alterations remain elusive. Using omics and computational analyses, we found that cyclic adenosine monophosphate-Protein Kinase A (cAMP-PKA) axis activation is fundamental for cancer cell resistance to glucose starvation and anoikis. Notably, here we show that such a PKA-dependent survival is mediated by parallel activation of autophagy and glutamine utilization that in concert concur to attenuate the endoplasmic reticulum (ER) stress and to sustain cell anabolism. Indeed, the inhibition of PKA-mediated autophagy or glutamine metabolism increased the level of cell death, suggesting that the induction of autophagy and metabolic rewiring by PKA is important for cancer cellular survival under glucose starvation. Importantly, both processes actively participate to cancer cell survival mediated by suspension-activated PKA as well. In addition we identify also a PKA/Src mechanism capable to protect cancer cells from anoikis. Our results reveal for the first time the role of the versatile PKA in cancer cells survival under chronic glucose starvation and anoikis and may be a novel potential target for cancer treatment.


Assuntos
Autofagia/genética , Proteínas Quinases Dependentes de AMP Cíclico/biossíntese , AMP Cíclico/genética , Neoplasias/genética , Animais , Anoikis/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Estresse do Retículo Endoplasmático , Glucose/deficiência , Glucose/metabolismo , Glutamina/metabolismo , Glicólise , Humanos , Camundongos , Neoplasias/metabolismo , Inanição , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa