Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Comput Biol ; 20(2): e1011856, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38330050

RESUMO

Outbreaks of emerging and zoonotic infections represent a substantial threat to human health and well-being. These outbreaks tend to be characterised by highly stochastic transmission dynamics with intense variation in transmission potential between cases. The negative binomial distribution is commonly used as a model for transmission in the early stages of an epidemic as it has a natural interpretation as the convolution of a Poisson contact process and a gamma-distributed infectivity. In this study we expand upon the negative binomial model by introducing a beta-Poisson mixture model in which infectious individuals make contacts at the points of a Poisson process and then transmit infection along these contacts with a beta-distributed probability. We show that the negative binomial distribution is a limit case of this model, as is the zero-inflated Poisson distribution obtained by combining a Poisson-distributed contact process with an additional failure probability. We assess the beta-Poisson model's applicability by fitting it to secondary case distributions (the distribution of the number of subsequent cases generated by a single case) estimated from outbreaks covering a range of pathogens and geographical settings. We find that while the beta-Poisson mixture can achieve a closer to fit to data than the negative binomial distribution, it is consistently outperformed by the negative binomial in terms of Akaike Information Criterion, making it a suboptimal choice on parsimonious grounds. The beta-Poisson performs similarly to the negative binomial model in its ability to capture features of the secondary case distribution such as overdispersion, prevalence of superspreaders, and the probability of a case generating zero subsequent cases. Despite this possible shortcoming, the beta-Poisson distribution may still be of interest in the context of intervention modelling since its structure allows for the simulation of measures which change contact structures while leaving individual-level infectivity unchanged, and vice-versa.


Assuntos
Surtos de Doenças , Modelos Estatísticos , Humanos , Simulação por Computador , Distribuição de Poisson , Distribuição Binomial
2.
Eur J Neurosci ; 57(1): 54-63, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36382836

RESUMO

Fear and anxiety are adaptive states that allow humans and animals alike to respond appropriately to threatening cues in their environment. Commonly used tasks for studying behaviour akin to fear and anxiety in rodent models are Pavlovian threat conditioning and the elevated plus maze (EPM), respectively. In threat conditioning the rodents learn to associate an aversive event with a specific stimulus or context. The learnt association between the two stimuli (the 'memory') can then be recalled by re-exposing the subject to the conditioned stimulus. The elevated plus maze is argued to measure the agoraphobic avoidance of the brightly lit open maze arms in crepuscular rodents. These two tasks have been used extensively, yet research into whether they interact is scarce. We investigated whether recall of an aversive memory, across contextual, odour or auditory modalities, would potentiate anxiety-like behaviour in the elevated plus maze. The data did not support that memory recall, even over a series of time points, could influence EPM behaviour. Furthermore, there was no correlation between EPM behaviour and conditioned freezing in independent cohorts tested in the EPM before or after auditory threat conditioning. Further analysis found the production of 22 kHz ultrasonic vocalisations revealed the strongest responders to a conditioned threat cue. These results are of particular importance for consideration when using the EPM and threat conditioning to identify individual differences and the possibility to use the tasks in batteries of tests without cross-task interference.


Assuntos
Sinais (Psicologia) , Teste de Labirinto em Cruz Elevado , Animais , Humanos , Aprendizagem em Labirinto , Ansiedade , Medo
3.
PLoS Comput Biol ; 18(9): e1010390, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067212

RESUMO

The widespread, and in many countries unprecedented, use of non-pharmaceutical interventions (NPIs) during the COVID-19 pandemic has highlighted the need for mathematical models which can estimate the impact of these measures while accounting for the highly heterogeneous risk profile of COVID-19. Models accounting either for age structure or the household structure necessary to explicitly model many NPIs are commonly used in infectious disease modelling, but models incorporating both levels of structure present substantial computational and mathematical challenges due to their high dimensionality. Here we present a modelling framework for the spread of an epidemic that includes explicit representation of age structure and household structure. Our model is formulated in terms of tractable systems of ordinary differential equations for which we provide an open-source Python implementation. Such tractability leads to significant benefits for model calibration, exhaustive evaluation of possible parameter values, and interpretability of results. We demonstrate the flexibility of our model through four policy case studies, where we quantify the likely benefits of the following measures which were either considered or implemented in the UK during the current COVID-19 pandemic: control of within- and between-household mixing through NPIs; formation of support bubbles during lockdown periods; out-of-household isolation (OOHI); and temporary relaxation of NPIs during holiday periods. Our ordinary differential equation formulation and associated analysis demonstrate that multiple dimensions of risk stratification and social structure can be incorporated into infectious disease models without sacrificing mathematical tractability. This model and its software implementation expand the range of tools available to infectious disease policy analysts.


Assuntos
COVID-19 , Doenças Transmissíveis , COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis/métodos , Humanos , Pandemias/prevenção & controle , Políticas , SARS-CoV-2
4.
PLoS Comput Biol ; 17(7): e1009090, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34283832

RESUMO

We explore the spatial and temporal spread of the novel SARS-CoV-2 virus under containment measures in three European countries based on fits to data of the early outbreak. Using data from Spain and Italy, we estimate an age dependent infection fatality ratio for SARS-CoV-2, as well as risks of hospitalization and intensive care admission. We use them in a model that simulates the dynamics of the virus using an age structured, spatially detailed agent based approach, that explicitly incorporates governmental interventions and changes in mobility and contact patterns occurred during the COVID-19 outbreak in each country. Our simulations reproduce several of the features of its spatio-temporal spread in the three countries studied. They show that containment measures combined with high density are responsible for the containment of cases within densely populated areas, and that spread to less densely populated areas occurred during the late stages of the first wave. The capability to reproduce observed features of the spatio-temporal dynamics of SARS-CoV-2 makes this model a potential candidate for forecasting the dynamics of SARS-CoV-2 in other settings, and we recommend its application in low and lower-middle income countries which remain understudied.


Assuntos
COVID-19/epidemiologia , Simulação por Computador , COVID-19/mortalidade , COVID-19/transmissão , COVID-19/virologia , Busca de Comunicante , Surtos de Doenças , Hospitalização/estatística & dados numéricos , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Itália/epidemiologia , Admissão do Paciente/estatística & dados numéricos , Distanciamento Físico , Risco , SARS-CoV-2/isolamento & purificação , Espanha/epidemiologia , Reino Unido/epidemiologia
5.
PLoS Comput Biol ; 16(7): e1008031, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32614817

RESUMO

The 2019-2020 pandemic of atypical pneumonia (COVID-19) caused by the virus SARS-CoV-2 has spread globally and has the potential to infect large numbers of people in every country. Estimating the country-specific basic reproductive ratio is a vital first step in public-health planning. The basic reproductive ratio (R0) is determined by both the nature of pathogen and the network of human contacts through which the disease can spread, which is itself dependent on population age structure and household composition. Here we introduce a transmission model combining age-stratified contact frequencies with age-dependent susceptibility, probability of clinical symptoms, and transmission from asymptomatic (or mild) cases, which we use to estimate the country-specific basic reproductive ratio of COVID-19 for 152 countries. Using early outbreak data from China and a synthetic contact matrix, we estimate an age-stratified transmission structure which can then be extrapolated to 151 other countries for which synthetic contact matrices also exist. This defines a set of country-specific transmission structures from which we can calculate the basic reproductive ratio for each country. Our predicted R0 is critically sensitive to the intensity of transmission from asymptomatic cases; with low asymptomatic transmission the highest values are predicted across Eastern Europe and Japan and the lowest across Africa, Central America and South-Western Asia. This pattern is largely driven by the ratio of children to older adults in each country and the observed propensity of clinical cases in the elderly. If asymptomatic cases have comparable transmission to detected cases, the pattern is reversed. Our results demonstrate the importance of age-specific heterogeneities going beyond contact structure to the spread of COVID-19. These heterogeneities give COVID-19 the capacity to spread particularly quickly in countries with older populations, and that intensive control measures are likely to be necessary to impede its progress in these countries.


Assuntos
Busca de Comunicante/métodos , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Previsões/métodos , Modelos Estatísticos , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Fatores Etários , Infecções Assintomáticas/epidemiologia , Betacoronavirus/isolamento & purificação , Betacoronavirus/fisiologia , COVID-19 , China/epidemiologia , Biologia Computacional/métodos , Surtos de Doenças/prevenção & controle , Humanos , Pandemias/prevenção & controle , Pandemias/estatística & dados numéricos , SARS-CoV-2 , Replicação Viral/fisiologia
6.
Nat Commun ; 14(1): 4100, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433797

RESUMO

Beginning in May 2022, Mpox virus spread rapidly in high-income countries through close human-to-human contact primarily amongst communities of gay, bisexual and men who have sex with men (GBMSM). Behavioural change arising from increased knowledge and health warnings may have reduced the rate of transmission and modified Vaccinia-based vaccination is likely to be an effective longer-term intervention. We investigate the UK epidemic presenting 26-week projections using a stochastic discrete-population transmission model which includes GBMSM status, rate of formation of new sexual partnerships, and clique partitioning of the population. The Mpox cases peaked in mid-July; our analysis is that the decline was due to decreased transmission rate per infected individual and infection-induced immunity among GBMSM, especially those with the highest rate of new partners. Vaccination did not cause Mpox incidence to turn over, however, we predict that a rebound in cases due to behaviour reversion was prevented by high-risk group-targeted vaccination.


Assuntos
Mpox , Minorias Sexuais e de Gênero , Masculino , Humanos , Homossexualidade Masculina , Incidência , Reino Unido/epidemiologia , Vacinação
7.
Wellcome Open Res ; 5: 213, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33623826

RESUMO

Background: ​ During the coronavirus disease 2019 (COVID-19) lockdown, contact clustering in social bubbles may allow extending contacts beyond the household at minimal additional risk and hence has been considered as part of modified lockdown policy or a gradual lockdown exit strategy. We estimated the impact of such strategies on epidemic and mortality risk using the UK as a case study. Methods: ​ We used an individual based model for a synthetic population similar to the UK, stratified into transmission risks from the community, within the household and from other households in the same social bubble. The base case considers a situation where non-essential shops and schools are closed, the secondary household attack rate is 20% and the initial reproduction number is 0.8. We simulate social bubble strategies (where two households form an exclusive pair) for households including children, for single occupancy households, and for all households. We test the sensitivity of results to a range of alternative model assumptions and parameters. Results:  Clustering contacts outside the household into exclusive bubbles is an effective strategy of increasing contacts while limiting the associated increase in epidemic risk. In the base case, social bubbles reduced fatalities by 42% compared to an unclustered increase of contacts. We find that if all households were to form social bubbles the reproduction number would likely increase to above the epidemic threshold of R=1. Strategies allowing households with young children or single occupancy households to form social bubbles increased the reproduction number by less than 11%. The corresponding increase in mortality is proportional to the increase in the epidemic risk but is focussed in older adults irrespective of inclusion in social bubbles. Conclusions: ​ If managed appropriately, social bubbles can be an effective way of extending contacts beyond the household while limiting the increase in epidemic risk.

8.
J R Soc Interface ; 16(157): 20190317, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31387486

RESUMO

The spread of infectious diseases is intimately linked with the strength and type of contact between individuals. Multiple observational and modelling studies have highlighted the importance of two forms of social mixing: age structure, where the likelihood of interaction between two individuals is determined by their ages; and household structure, which recognizes the much stronger contacts and hence transmission potential within the family setting. Age structure has been ubiquitous in predictive models of both endemic and epidemic infections, in part due to the ease of assessing someone's age. By contrast, although household structure is potentially the dominant heterogeneity, it has received less attention, in part due to an absence of the necessary methodology. Here, we develop the modelling framework necessary to predict the behaviour of endemic infections (which necessitates capturing demographic processes) in populations that possess both household and age structure. We compare two childhood infections, with measles-like and mumps-like parameters, and two populations with UK-like and Kenya-like characteristics, which allows us to disentangle the impact of epidemiology and demography. For this high-dimensional model, we predict complex nonlinear dynamics, where the dynamics of within-household outbreaks are tempered by historical waves of infection and the immunity of older individuals.


Assuntos
Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/transmissão , Doenças Endêmicas/prevenção & controle , Características da Família , Modelos Biológicos , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa