Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Immunol ; 25(6): 1073-1082, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816615

RESUMO

A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display. Scaffolds exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens, protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. Thus, germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features.


Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Proteína gp41 do Envelope de HIV , Infecções por HIV , HIV-1 , Macaca mulatta , Animais , Humanos , Proteína gp41 do Envelope de HIV/imunologia , Anticorpos Anti-HIV/imunologia , Camundongos , Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , HIV-1/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Vacinação , Anticorpos Amplamente Neutralizantes/imunologia , Linfócitos B/imunologia , Nanopartículas/química , Feminino , Regiões Determinantes de Complementaridade/imunologia , Epitopos/imunologia
2.
Cell ; 168(6): 1114-1125.e10, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28222903

RESUMO

The emergence of ZIKV infection has prompted a global effort to develop safe and effective vaccines. We engineered a lipid nanoparticle (LNP) encapsulated modified mRNA vaccine encoding wild-type or variant ZIKV structural genes and tested immunogenicity and protection in mice. Two doses of modified mRNA LNPs encoding prM-E genes that produced virus-like particles resulted in high neutralizing antibody titers (∼1/100,000) that protected against ZIKV infection and conferred sterilizing immunity. To offset a theoretical concern of ZIKV vaccines inducing antibodies that cross-react with the related dengue virus (DENV), we designed modified prM-E RNA encoding mutations destroying the conserved fusion-loop epitope in the E protein. This variant protected against ZIKV and diminished production of antibodies enhancing DENV infection in cells or mice. A modified mRNA vaccine can prevent ZIKV disease and be adapted to reduce the risk of sensitizing individuals to subsequent exposure to DENV, should this become a clinically relevant concern.


Assuntos
RNA Mensageiro/administração & dosagem , Vacinas Virais/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/prevenção & controle , Animais , Epitopos/imunologia , Feminino , Lipídeos/química , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanopartículas/química , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Vacinas Virais/administração & dosagem , Zika virus/imunologia
3.
Cell ; 170(2): 273-283.e12, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28708997

RESUMO

The emergence of Zika virus (ZIKV) and its association with congenital malformations has prompted the rapid development of vaccines. Although efficacy with multiple viral vaccine platforms has been established in animals, no study has addressed protection during pregnancy. We tested in mice two vaccine platforms, a lipid nanoparticle-encapsulated modified mRNA vaccine encoding ZIKV prM and E genes and a live-attenuated ZIKV strain encoding an NS1 protein without glycosylation, for their ability to protect against transmission to the fetus. Vaccinated dams challenged with a heterologous ZIKV strain at embryo day 6 (E6) and evaluated at E13 showed markedly diminished levels of viral RNA in maternal, placental, and fetal tissues, which resulted in protection against placental damage and fetal demise. As modified mRNA and live-attenuated vaccine platforms can restrict in utero transmission of ZIKV in mice, their further development in humans to prevent congenital ZIKV syndrome is warranted.


Assuntos
Vacinas Virais/administração & dosagem , Infecção por Zika virus/imunologia , Infecção por Zika virus/prevenção & controle , Zika virus/fisiologia , Aedes/virologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Células Sanguíneas/virologia , Embrião de Mamíferos/virologia , Feminino , Feto/virologia , Humanos , Lipídeos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Organismos Livres de Patógenos Específicos , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/virologia
5.
Immunity ; 55(11): 2168-2186.e6, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36179690

RESUMO

Eliciting broadly neutralizing antibodies (bnAbs) is the core of HIV vaccine design. bnAbs specific to the V2-apex region of the HIV envelope acquire breadth and potency with modest somatic hypermutation, making them attractive vaccination targets. To evaluate Apex germline-targeting (ApexGT) vaccine candidates, we engineered knockin (KI) mouse models expressing the germline B cell receptor (BCR) of the bnAb PCT64. We found that high affinity of the ApexGT immunogen for PCT64-germline BCRs was necessary to specifically activate KI B cells at human physiological frequencies, recruit them to germinal centers, and select for mature bnAb mutations. Relative to protein, mRNA-encoded membrane-bound ApexGT immunization significantly increased activation and recruitment of PCT64 precursors to germinal centers and lowered their affinity threshold. We have thus developed additional models for HIV vaccine research, validated ApexGT immunogens for priming V2-apex bnAb precursors, and identified mRNA-LNP as a suitable approach to substantially improve the B cell response.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Camundongos , Humanos , Animais , Anticorpos Anti-HIV , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , RNA Mensageiro/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana
6.
Immunity ; 55(11): 2149-2167.e9, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36179689

RESUMO

Broadly neutralizing antibodies (bnAbs) to the HIV envelope (Env) V2-apex region are important leads for HIV vaccine design. Most V2-apex bnAbs engage Env with an uncommonly long heavy-chain complementarity-determining region 3 (HCDR3), suggesting that the rarity of bnAb precursors poses a challenge for vaccine priming. We created precursor sequence definitions for V2-apex HCDR3-dependent bnAbs and searched for related precursors in human antibody heavy-chain ultradeep sequencing data from 14 HIV-unexposed donors. We found potential precursors in a majority of donors for only two long-HCDR3 V2-apex bnAbs, PCT64 and PG9, identifying these bnAbs as priority vaccine targets. We then engineered ApexGT Env trimers that bound inferred germlines for PCT64 and PG9 and had higher affinities for bnAbs, determined cryo-EM structures of ApexGT trimers complexed with inferred-germline and bnAb forms of PCT64 and PG9, and developed an mRNA-encoded cell-surface ApexGT trimer. These methods and immunogens have promise to assist HIV vaccine development.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Humanos , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV , Produtos do Gene env do Vírus da Imunodeficiência Humana , Anticorpos Neutralizantes , Regiões Determinantes de Complementaridade/genética , Infecções por HIV/prevenção & controle
8.
Nature ; 586(7830): 567-571, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32756549

RESUMO

A vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed to control the coronavirus disease 2019 (COVID-19) global pandemic. Structural studies have led to the development of mutations that stabilize Betacoronavirus spike proteins in the prefusion state, improving their expression and increasing immunogenicity1. This principle has been applied to design mRNA-1273, an mRNA vaccine that encodes a SARS-CoV-2 spike protein that is stabilized in the prefusion conformation. Here we show that mRNA-1273 induces potent neutralizing antibody responses to both wild-type (D614) and D614G mutant2 SARS-CoV-2 as well as CD8+ T cell responses, and protects against SARS-CoV-2 infection in the lungs and noses of mice without evidence of immunopathology. mRNA-1273 is currently in a phase III trial to evaluate its efficacy.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/imunologia , Pneumonia Viral/prevenção & controle , Vacinas Virais/imunologia , Vacina de mRNA-1273 contra 2019-nCoV , Animais , Anticorpos Neutralizantes/imunologia , Betacoronavirus/genética , Linfócitos T CD8-Positivos/imunologia , COVID-19 , Vacinas contra COVID-19 , Ensaios Clínicos Fase III como Assunto , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Feminino , Pulmão/imunologia , Pulmão/virologia , Camundongos , Mutação , Nariz/imunologia , Nariz/virologia , Pneumonia Viral/virologia , RNA Mensageiro/genética , RNA Viral/genética , SARS-CoV-2 , Células Th1/imunologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/imunologia , Vacinas Virais/química , Vacinas Virais/genética
9.
Proc Natl Acad Sci U S A ; 120(29): e2305896120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428933

RESUMO

Vaccines have played a fundamental role in the control of infectious diseases. We previously developed a messenger RNA (mRNA) vaccine against HIV-1 that forms virus-like particles (VLPs) through coexpression of the viral envelope with Gag. Here, we applied the same principle to the design of a VLP-forming mRNA vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To promote cognate interaction with simian immunodeficiency virus (SIV) Gag, we engineered different chimeric proteins encompassing the ectodomain and the transmembrane region of the SARS-CoV-2 Spike protein from the Wuhan-Hu-1 strain fused to the gp41 cytoplasmic tail of either HIV-1 (strain WITO) or SIV (strain mac239) with or without a partial truncation at amino acid 745 to enhance membrane expression. Upon cotransfection with SIV gag mRNA, the Spike-SIVCT.745 (SSt) chimera yielded the highest level of cell-surface expression and extracellular VLP release. Immunization of BALB/c mice with SSt+gag mRNA at 0, 4, and 16 wk induced higher titers of Spike-binding and autologous neutralizing antibodies at all time points compared to SSt mRNA alone. Furthermore, mice immunized with SSt+gag mRNA developed neutralizing antibodies effective against different variants of concern. These data demonstrate that the Gag/VLP mRNA platform can be successfully applied to vaccines against different agents for the prevention of infectious diseases of global relevance.


Assuntos
COVID-19 , Vírus da Imunodeficiência Símia , Humanos , Animais , Camundongos , Vacinas contra COVID-19/genética , Anticorpos Antivirais , SARS-CoV-2/genética , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética , Vírus da Imunodeficiência Símia/genética
10.
J Infect Dis ; 220(10): 1577-1588, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31260518

RESUMO

Zika virus (ZIKV) caused an epidemic of congenital malformations in 2015-2016. Although many vaccine candidates have been generated, few have demonstrated efficacy against congenital ZIKV infection. Here, we evaluated lipid-encapsulated messenger RNA (mRNA) vaccines and a DNA plasmid vaccine encoding the prM-E genes of ZIKV in mouse models of congenital infection. Although the DNA vaccine provided comparable efficacy against vertical transmission of ZIKV, the mRNA vaccines, including one that minimizes antibody-dependent enhancement of infection, elicited higher levels of antigen-specific long-lived plasma cells and memory B cells. Despite the induction of robust neutralizing antibody titers by all vaccines, breakthrough seeding of the placenta and fetal head was observed in a small subset of type I interferon signaling-deficient immunocompromised dams. In comparison, evaluation of one of the mRNA vaccines in a human STAT2-knockin transgenic immunocompetent mouse showed complete protection against congenital ZIKV transmission. These data will inform ongoing human ZIKV vaccine development efforts and enhance our understanding of the correlates of vaccine-induced protection.


Assuntos
Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Linfócitos B/imunologia , Feminino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasmócitos/imunologia , Gravidez , Vacinas de DNA/administração & dosagem , Vacinas Virais/administração & dosagem
11.
Res Sq ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38585993

RESUMO

The first-ever recent Marburg virus (MARV) outbreak in Ghana, West Africa and Equatorial Guinea has refocused efforts towards the development of therapeutics since no vaccine or treatment has been approved. mRNA vaccines were proven successful in a pandemic-response to severe acute respiratory syndrome coronavirus-2, making it an appealing vaccine platform to target highly pathogenic emerging viruses. Here, 1-methyl-pseudouridine-modified mRNA vaccines formulated in lipid nanoparticles (LNP) were developed against MARV and the closely-related Ravn virus (RAVV), which were based on sequences of the glycoproteins (GP) of the two viruses. Vaccination of guinea pigs with both vaccines elicited robust binding and neutralizing antibodies and conferred complete protection against virus replication, disease and death. The study characterized antibody responses to identify disparities in the binding and functional profiles between the two viruses and regions in GP that are broadly reactive. For the first time, the glycan cap is highlighted as an immunoreactive site for marburgviruses, inducing both binding and neutralizing antibody responses that are dependent on the virus. Profiling the antibody responses against the two viruses provided an insight into how antigenic differences may affect the response towards conserved GP regions which would otherwise be predicted to be cross-reactive and has implications for the future design of broadly protective vaccines. The results support the use of mRNA-LNPs against pathogens of high consequence.

12.
Sci Immunol ; 9(95): eadn0622, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38753808

RESUMO

Germline-targeting (GT) protein immunogens to induce VRC01-class broadly neutralizing antibodies (bnAbs) to the CD4-binding site of the HIV envelope (Env) have shown promise in clinical trials. Here, we preclinically validated a lipid nanoparticle-encapsulated nucleoside mRNA (mRNA-LNP) encoding eOD-GT8 60mer as a soluble self-assembling nanoparticle in mouse models. In a model with three humanized B cell lineages bearing distinct VRC01-precursor B cell receptors (BCRs) with similar affinities for eOD-GT8, all lineages could be simultaneously primed and undergo diversification and affinity maturation without exclusionary competition. Boosts drove precursor B cell participation in germinal centers; the accumulation of somatic hypermutations, including in key VRC01-class positions; and affinity maturation to boost and native-like antigens in two of the three precursor lineages. We have preclinically validated a prime-boost regimen of soluble self-assembling nanoparticles encoded by mRNA-LNP, demonstrating that multiple lineages can be primed, boosted, and diversified along the bnAb pathway.


Assuntos
Anticorpos Amplamente Neutralizantes , Nanopartículas , RNA Mensageiro , Animais , Camundongos , Humanos , RNA Mensageiro/imunologia , RNA Mensageiro/genética , Nanopartículas/química , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Lipídeos/imunologia , Infecções por HIV/imunologia , Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , HIV-1/imunologia , Feminino , Anticorpos Monoclonais , Lipossomos
13.
NPJ Vaccines ; 9(1): 103, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858423

RESUMO

Acellular multivalent vaccines for pertussis (DTaP and Tdap) prevent symptomatic disease and infant mortality, but immunity to Bordetella pertussis infection wanes significantly over time resulting in cyclic epidemics of pertussis. The messenger RNA (mRNA) vaccine platform provides an opportunity to address complex bacterial infections with an adaptable approach providing Th1-biased responses. In this study, immunogenicity and challenge models were used to evaluate the mRNA platform with multivalent vaccine formulations targeting both B. pertussis antigens and diphtheria and tetanus toxoids. Immunization with mRNA formulations were immunogenetic, induced antigen specific antibodies, as well as Th1 T cell responses. Upon challenge with either historical or contemporary B. pertussis strains, 6 and 10 valent mRNA DTP vaccine provided protection equal to that of 1/20th human doses of either DTaP or whole cell pertussis vaccines. mRNA DTP immunized mice were also protected from pertussis toxin challenge as measured by prevention of lymphocytosis and leukocytosis. Collectively these pre-clinical mouse studies illustrate the potential of the mRNA platform for multivalent bacterial pathogen vaccines.

14.
Science ; 384(6697): eadk0582, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38753770

RESUMO

Germline-targeting (GT) HIV vaccine strategies are predicated on deriving broadly neutralizing antibodies (bnAbs) through multiple boost immunogens. However, as the recruitment of memory B cells (MBCs) to germinal centers (GCs) is inefficient and may be derailed by serum antibody-induced epitope masking, driving further B cell receptor (BCR) modification in GC-experienced B cells after boosting poses a challenge. Using humanized immunoglobulin knockin mice, we found that GT protein trimer immunogen N332-GT5 could prime inferred-germline precursors to the V3-glycan-targeted bnAb BG18 and that B cells primed by N332-GT5 were effectively boosted by either of two novel protein immunogens designed to have minimum cross-reactivity with the off-target V1-binding responses. The delivery of the prime and boost immunogens as messenger RNA lipid nanoparticles (mRNA-LNPs) generated long-lasting GCs, somatic hypermutation, and affinity maturation and may be an effective tool in HIV vaccine development.


Assuntos
Vacinas contra a AIDS , Anticorpos Amplamente Neutralizantes , Centro Germinativo , Anticorpos Anti-HIV , HIV-1 , Imunização Secundária , Nanopartículas , Vacinas de mRNA , Animais , Humanos , Camundongos , Vacinas contra a AIDS/imunologia , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Reações Cruzadas , Técnicas de Introdução de Genes , Centro Germinativo/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , HIV-1/genética , Lipossomos , Células B de Memória/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos B/genética , Hipermutação Somática de Imunoglobulina , Vacinas de mRNA/imunologia , Feminino , Camundongos Endogâmicos C57BL
15.
Sci Transl Med ; 16(748): eadn0223, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38753806

RESUMO

A protective HIV vaccine will likely need to induce broadly neutralizing antibodies (bnAbs). Vaccination with the germline-targeting immunogen eOD-GT8 60mer adjuvanted with AS01B was found to induce VRC01-class bnAb precursors in 97% of vaccine recipients in the IAVI G001 phase 1 clinical trial; however, heterologous boost immunizations with antigens more similar to the native glycoprotein will be required to induce bnAbs. Therefore, we designed core-g28v2 60mer, a nanoparticle immunogen to be used as a first boost after eOD-GT8 60mer priming. We found, using a humanized mouse model approximating human conditions of VRC01-class precursor B cell diversity, affinity, and frequency, that both protein- and mRNA-based heterologous prime-boost regimens induced VRC01-class antibodies that gained key mutations and bound to near-native HIV envelope trimers lacking the N276 glycan. We further showed that VRC01-class antibodies induced by mRNA-based regimens could neutralize pseudoviruses lacking the N276 glycan. These results demonstrated that heterologous boosting can drive maturation toward VRC01-class bnAb development and supported the initiation of the IAVI G002 phase 1 trial testing mRNA-encoded nanoparticle prime-boost regimens.


Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Animais , Humanos , Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Camundongos , Vacinação , Imunização Secundária , HIV-1/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Anticorpos Amplamente Neutralizantes/imunologia
16.
Nat Commun ; 14(1): 5603, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699929

RESUMO

Lassa virus is a member of the Arenaviridae family, which causes human infections ranging from asymptomatic to severe hemorrhagic disease with a high case fatality rate. We have designed and generated lipid nanoparticle encapsulated, modified mRNA vaccines that encode for the wild-type Lassa virus strain Josiah glycoprotein complex or the prefusion stabilized conformation of the Lassa virus glycoprotein complex. Hartley guinea pigs were vaccinated with two 10 µg doses, 28 days apart, of either construct. Vaccination induced strong binding antibody responses, specific to the prefusion conformation of glycoprotein complex, which were significantly higher in the prefusion stabilized glycoprotein complex construct group and displayed strong Fc-mediated effects. However, Lassa virus-neutralizing antibody activity was detected in some but not all animals. Following the challenge with a lethal dose of the Lassa virus, all vaccinated animals were protected from death and severe disease. Although the definitive mechanism of protection is still unknown, and assessment of the cell-mediated immune response was not investigated in this study, these data demonstrate the promise of mRNA as a vaccine platform against the Lassa virus and that protection against Lassa virus can be achieved in the absence of virus-neutralizing antibodies.


Assuntos
Arenaviridae , Vírus Lassa , Humanos , Cobaias , Animais , Vírus Lassa/genética , Anticorpos Neutralizantes , Vacinas de mRNA , Glicoproteínas
17.
Cell Rep Med ; 4(11): 101253, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37918405

RESUMO

Colonization of the gut and airways by pathogenic bacteria can lead to local tissue destruction and life-threatening systemic infections, especially in immunologically compromised individuals. Here, we describe an mRNA-based platform enabling delivery of pathogen-specific immunoglobulin A (IgA) monoclonal antibodies into mucosal secretions. The platform consists of synthetic mRNA encoding IgA heavy, light, and joining (J) chains, packaged in lipid nanoparticles (LNPs) that express glycosylated, dimeric IgA with functional activity in vitro and in vivo. Importantly, mRNA-derived IgA had a significantly greater serum half-life and a more native glycosylation profile in mice than did a recombinantly produced IgA. Expression of an mRNA encoded Salmonella-specific IgA in mice resulted in intestinal localization and limited Peyer's patch invasion. The same mRNA-LNP technology was used to express a Pseudomonas-specific IgA that protected from a lung challenge. Leveraging the mRNA antibody technology as a means to intercept bacterial pathogens at mucosal surfaces opens up avenues for prophylactic and therapeutic interventions.


Assuntos
Mucosa , Nódulos Linfáticos Agregados , Camundongos , Animais , Imunoglobulina A , Anticorpos Monoclonais
18.
Antibodies (Basel) ; 11(4)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36412833

RESUMO

Monoclonal antibodies have been used successfully as recombinant protein therapy; however, for HIV, multiple broadly neutralizing antibodies may be necessary. We used the mRNA-LNP platform for in vivo co-expression of 3 broadly neutralizing antibodies, PGDM1400, PGT121, and N6, directed against the HIV-1 envelope protein. mRNA-encoded HIV-1 antibodies were engineered as single-chain Fc (scFv-Fc) to overcome heavy- and light-chain mismatch. In vitro neutralization breadth and potency of the constructs were compared to their parental IgG form. We assessed the ability of these scFv-Fcs to be expressed individually and in combination in vivo, and neutralization and pharmacokinetics were compared to the corresponding full-length IgGs. Single-chain PGDM1400 and PGT121 exhibited neutralization potency comparable to parental IgG, achieving peak systemic concentrations ≥ 30.81 µg/mL in mice; full-length N6 IgG achieved a peak concentration of 974 µg/mL, but did not tolerate single-chain conversion. The mRNA combination encoding full-length N6 IgG and single-chain PGDM1400 and PGT121 was efficiently expressed in mice, achieving high systemic concentration and desired neutralization potency. Analysis of mice sera demonstrated each antibody contributed towards neutralization of multiple HIV-1 pseudoviruses. Together, these data show that the mRNA-LNP platform provides a promising approach for antibody-based HIV treatment and is well-suited for development of combination therapeutics.

19.
Nat Med ; 27(12): 2224-2233, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34887572

RESUMO

Chikungunya virus (CHIKV) infection causes acute disease characterized by fever, rash and arthralgia, which progresses to severe and chronic arthritis in up to 50% of patients. Moreover, CHIKV infection can be fatal in infants or immunocompromised individuals and has no approved therapy or prevention. This phase 1, first-in-human, randomized, placebo-controlled, proof-of-concept trial conducted from January 2019 to June 2020 evaluated the safety and pharmacology of mRNA-1944, a lipid nanoparticle-encapsulated messenger RNA encoding the heavy and light chains of a CHIKV-specific monoclonal neutralizing antibody, CHKV-24 ( NCT03829384 ). The primary outcome was to evaluate the safety and tolerability of escalating doses of mRNA-1944 administered via intravenous infusion in healthy participants aged 18-50 years. The secondary objectives included determination of the pharmacokinetics of mRNA encoding for CHKV-24 immunoglobulin heavy and light chains and ionizable amino lipid component and the pharmacodynamics of mRNA-1944 as assessed by serum concentrations of mRNA encoding for CHKV-24 immunoglobulin G (IgG), plasma concentrations of ionizable amino lipid and serum concentrations of CHKV-24 IgG. Here we report the results of a prespecified interim analysis of 38 healthy participants who received intravenous single doses of mRNA-1944 or placebo at 0.1, 0.3 and 0.6 mg kg-1, or two weekly doses at 0.3 mg kg-1. At 12, 24 and 48 h after single infusions, dose-dependent levels of CHKV-24 IgG with neutralizing activity were observed at titers predicted to be therapeutically relevant concentrations (≥1 µg ml-1) across doses that persisted for ≥16 weeks at 0.3 and 0.6 mg kg-1 (mean t1/2 approximately 69 d). A second 0.3 mg kg-1 dose 1 week after the first increased CHKV-24 IgG levels 1.8-fold. Adverse effects were mild to moderate in severity, did not worsen with a second mRNA-1944 dose and none were serious. To our knowledge, mRNA-1944 is the first mRNA-encoded monoclonal antibody showing in vivo expression and detectable ex vivo neutralizing activity in a clinical trial and may offer a treatment option for CHIKV infection. Further evaluation of the potential therapeutic use of mRNA-1944 in clinical trials for the treatment of CHIKV infection is warranted.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Vírus Chikungunya/imunologia , Lipídeos/química , RNA Mensageiro/uso terapêutico , Adulto , Anticorpos Monoclonais/genética , Anticorpos Neutralizantes/genética , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Nanopartículas/química , Placebos , Estudo de Prova de Conceito , RNA Mensageiro/efeitos adversos , RNA Mensageiro/genética , RNA Mensageiro/farmacocinética , Adulto Jovem
20.
Front Immunol ; 12: 772864, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956199

RESUMO

Nipah virus (NiV) represents a significant pandemic threat with zoonotic transmission from bats-to-humans with almost annual regional outbreaks characterized by documented human-to-human transmission and high fatality rates. Currently, no vaccine against NiV has been approved. Structure-based design and protein engineering principles were applied to stabilize the fusion (F) protein in its prefusion trimeric conformation (pre-F) to improve expression and increase immunogenicity. We covalently linked the stabilized pre-F through trimerization domains at the C-terminus to three attachment protein (G) monomers, forming a chimeric design. These studies detailed here focus on mRNA delivery of NiV immunogens in mice, assessment of mRNA immunogen-specific design elements and their effects on humoral and cellular immunogenicity. The pre-F/G chimera elicited a strong neutralizing antibody response and a superior NiV-specific Tfh and other effector T cell response compared to G alone across both the mRNA and protein platforms. These findings enabled final candidate selection of pre-F/G Fd for clinical development.


Assuntos
Antígenos Virais/genética , Lipossomos/administração & dosagem , Nanopartículas/administração & dosagem , Vírus Nipah/imunologia , Proteínas do Envelope Viral/genética , Proteínas Virais de Fusão/genética , Vacinas Virais/administração & dosagem , Vacinas de mRNA/administração & dosagem , Animais , Antígenos Virais/imunologia , Feminino , Imunoglobulina G/sangue , Camundongos , Parcerias Público-Privadas , RNA Mensageiro/administração & dosagem , Linfócitos T/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas Virais de Fusão/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa