Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 47(6): 592-600, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30885913

RESUMO

The liver is the predominant organ of metabolism for many endogenous and foreign chemicals. Cytosolic sulfotransferases (SULTs) catalyze the sulfonation of drugs and other xenobiotics, as well as hormones, neurotransmitters, and sterols, with consequences that include enhanced drug elimination, hormone inactivation, and procarcinogen bioactivation. SULTs are classified into six gene families, but only SULT1 and SULT2 enzymes are expressed in human liver. We characterized the developmental expression patterns of SULT1 and SULT2 mRNAs and proteins in human liver samples using reverse transcription quantitative polymerase chain reaction (RT-qPCR), RNA sequencing, and targeted quantitative proteomics. Using a set of prenatal, infant, and adult liver specimens, RT-qPCR analysis demonstrated that SULT1A1 (transcript variant 1) expression did not vary appreciably during development; SULT1C2, 1C4, and 1E1 mRNA levels were highest in prenatal and/or infant liver, and 1A2, 1B1, and 2A1 mRNA levels were highest in infant and/or adult. Hepatic SULT1A1 (transcript variant 5), 1C3, and 2B1 mRNA levels were low regardless of developmental stage. Results obtained with RNA sequencing of a different set of liver specimens (prenatal and pediatric) were generally comparable results to those of the RT-qPCR analysis, with the additional finding that SULT1A3 expression was highest during gestation. Analysis of SULT protein content in a library of human liver cytosols demonstrated that protein levels generally corresponded to the mRNAs, with the major exception that SULT1C4 protein levels were much lower than expected based on mRNA levels. These findings further support the concept that hepatic SULTs play important metabolic roles throughout the human life course, including early development.


Assuntos
Citosol/metabolismo , Fígado/metabolismo , Sulfotransferases/metabolismo , Adolescente , Adulto , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Adulto Jovem
2.
Chem Res Toxicol ; 32(8): 1707-1721, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31304741

RESUMO

Pediatric patients are at elevated risk of adverse drug reactions, and there is insufficient information on drug safety in children. Complicating risk assessment in children, there are numerous age-dependent changes in the absorption, distribution, metabolism, and elimination of drugs. A key contributor to age-dependent drug toxicity risk is the ontogeny of drug metabolism enzymes, the changes in both abundance and type throughout development from the fetal period through adulthood. Critically, these changes affect not only the overall clearance of drugs but also exposure to individual metabolites. In this study, we introduce time-embedding neural networks in order to model population-level variation in metabolism enzyme expression as a function of age. We use a time-embedding network to model the ontogeny of 23 drug metabolism enzymes. The time-embedding network recapitulates known demographic factors impacting 3A5 expression. The time-embedding network also effectively models the nonlinear dynamics of 2D6 expression, enabling a better fit to clinical data than prior work. In contrast, a standard neural network fails to model these features of 3A5 and 2D6 expression. Finally, we combine the time-embedding model of ontogeny with additional information to estimate age-dependent changes in reactive metabolite exposure. This simple approach identifies age-dependent changes in exposure to valproic acid and dextromethorphan metabolites and suggests potential mechanisms of valproic acid toxicity. This approach may help researchers evaluate the risk of drug toxicity in pediatric populations.


Assuntos
Neoplasias Hepáticas/metabolismo , Redes Neurais de Computação , Adolescente , Carboxilesterase/metabolismo , Criança , Pré-Escolar , Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronosiltransferase/metabolismo , Glutationa Transferase/metabolismo , Humanos , Inativação Metabólica , Lactente , Oxigenases/metabolismo , Análise de Componente Principal , Sulfurtransferases/metabolismo , Fatores de Tempo
3.
Drug Metab Dispos ; 45(5): 468-475, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28228413

RESUMO

Predicting age-specific metabolism is important for evaluating age-related drug and chemical sensitivity. Multiple cytochrome P450s and carboxylesterase enzymes are responsible for human pyrethroid metabolism. Complete ontogeny data for each enzyme are needed to support in vitro to in vivo extrapolation (IVIVE). This study was designed to determine age-dependent human hepatic CYP2C8 expression, for which only limited ontogeny data are available, and to further define CYP1A2 ontogeny. CYP2C8 and 1A2 protein levels were measured by quantitative Western blotting using liver microsomal samples prepared from 222 subjects with ages ranging from 8 weeks gestation to 18 years after birth. The median CYP2C8 expression was significantly greater among samples from subjects older than 35 postnatal days (n = 122) compared with fetal samples and those from very young infants (fetal to 35 days postnatal, n = 100) (0.00 vs. 13.38 pmol/mg microsomal protein; p < 0.0001). In contrast, the median CYP1A2 expression was significantly greater after 15 months postnatal age (n = 55) than in fetal and younger postnatal samples (fetal to 15 months postnatal, n = 167) (0.0167 vs. 2.354 pmol/mg microsomal protein; p < 0.0001). CYP2C8, but not CYP1A2, protein levels significantly correlated with those of CYP2C9, CYP2C19, and CYP3A4 (p < 0.001), consistent with CYP2C8 and CYP1A2 ontogeny probably being controlled by different mechanisms. This study provides key data for the physiologically based pharmacokinetic model-based prediction of age-dependent pyrethroid metabolism, which will be used for IVIVE to support pyrethroid risk assessment for early life stages.


Assuntos
Envelhecimento/metabolismo , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP2C8/genética , Expressão Gênica , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Adolescente , Adulto , Envelhecimento/genética , Criança , Pré-Escolar , Feminino , Desenvolvimento Fetal/genética , Ontologia Genética , Idade Gestacional , Humanos , Técnicas In Vitro , Lactente , Recém-Nascido , Fígado/embriologia , Fígado/enzimologia , Masculino , Microssomos Hepáticos/enzimologia , Medição de Risco , Xenobióticos/metabolismo , Adulto Jovem
4.
Drug Metab Dispos ; 44(7): 959-66, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26825642

RESUMO

Human hepatic carboxylesterase 1 and 2 (CES1 and CES2) are important for the disposition of ester- and amide-bond-containing pharmaceuticals and environmental chemicals. CES1 and CES2 ontogeny has not been well characterized, causing difficulty in addressing concerns regarding juvenile sensitivity to adverse outcomes associated with exposure to certain substrates. To characterize postnatal human hepatic CES1 and CES2 expression, microsomal and cytosolic fractions were prepared using liver samples from subjects without liver disease (N = 165, aged 1 day to 18 years). Proteins were fractionated, detected, and quantitated by Western blotting. Median microsomal CES1 was lower among samples from subjects younger than 3 weeks (n = 36) compared with the rest of the population (n = 126; 6.27 vs. 17.5 pmol/mg microsomal protein, respectively; P < 0.001; Kruskal-Wallis test). Median cytosolic CES1 expression was lowest among samples from individuals between birth and 3 weeks of age (n = 36), markedly greater among those aged 3 weeks to 6 years (n = 90), and modestly greater still among those older than 6 years (n = 36; median values = 4.7, 15.8, and 16.6 pmol/mg cytosolic protein, respectively; P values < 0.001 and 0.05, respectively; Kruskal-Wallis test). Median microsomal CES2 expression increased across the same three age groups with median values of 1.8, 2.9, and 4.2 pmol/mg microsomal protein, respectively (P < 0.001, both). For cytosolic CES2, only the youngest age group differed from the two older groups (P < 0.001; median values = 1.29, 1.93, 2.0, respectively). These data suggest that infants younger than 3 weeks of age would exhibit significantly lower CES1- and CES2-dependent metabolic clearance compared with older individuals.


Assuntos
Envelhecimento/metabolismo , Carboxilesterase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Fígado/enzimologia , Adolescente , Fatores Etários , Criança , Pré-Escolar , Citosol/enzimologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Microssomos Hepáticos/enzimologia
5.
Drug Metab Dispos ; 44(7): 999-1004, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27098745

RESUMO

Determining appropriate pharmacotherapy in young children can be challenging due to uncertainties in the development of drug disposition pathways. With knowledge of the ontogeny of drug-metabolizing enzymes and an emerging focus on drug transporters, the developmental pattern of the uptake transporters organic anion transporting polypeptide (OATP) 1B1 and 1B3 was assessed by relative protein quantification using Western blotting in 80 human pediatric liver specimens covering an age range from 9 days to 12 years. OATP1B3 exhibited high expression at birth, which declined over the first months of life, and then increased again in the preadolescent period. In comparison with children 6-12 years of age, the relative protein expression of highly glycosylated (total) OATP1B3 was 235% (357%) in children <3 months of age, 33% (64%) in the age group from 3 months to 2 years, and 50% (59%) in children 2-6 years of age. The fraction of highly glycosylated to total OATP1B3 increased with age, indicating ontogenic processes not only at the transcriptional level but also at the post-translational level. Similar to OATP1B3, OATP1B1 showed high interindividual variability in relative protein expression but no statistically significant difference among the studied age groups.


Assuntos
Envelhecimento/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Fatores Etários , Envelhecimento/genética , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Glicosilação , Humanos , Lactente , Recém-Nascido , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Masculino , Processamento de Proteína Pós-Traducional , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética
6.
Drug Metab Dispos ; 44(7): 1027-37, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26921389

RESUMO

Variability in drug-metabolizing enzyme developmental trajectories contributes to interindividual differences in susceptibility to chemical toxicity and adverse drug reactions, particularly in the first years of life. Factors linked to these interindividual differences are largely unknown, but molecular mechanisms regulating ontogeny are likely involved. To evaluate chromatin structure dynamics as a likely contributing mechanism, age-dependent changes in modified and variant histone occupancy were evaluated within known CYP3A4 and 3A7 regulatory domains. Chromatin immunoprecipitation using fetal or postnatal human hepatocyte chromatin pools followed by quantitative polymerase chain reaction DNA amplification was used to determine relative chromatin occupancy by modified and variant histones. Chromatin structure representing a poised transcriptional state (bivalent chromatin), indicated by the occupancy by modified histones associated with both active and repressed transcription, was observed for CYP3A4 and most 3A7 regulatory regions in both postnatal and fetal livers. However, the CYP3A4 regulatory regions had significantly greater occupancy by modified histones associated with repressed transcription in the fetal liver. Conversely, some modified histones associated with active transcription exhibited greater occupancy in the postnatal liver. CYP3A7 regulatory regions also had significantly greater occupancy by modified histones associated with repressed transcription in the fetus. The observed occupancy by modified histones is consistent with chromatin structural dynamics contributing to CYP3A4 ontogeny, although the data are less conclusive regarding CYP3A7. Interpretation of the latter data may be confounded by cell-type heterogeneity in the fetal liver.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Citocromo P-450 CYP3A/metabolismo , Histonas/metabolismo , Fígado/enzimologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Sítios de Ligação , Criança , Pré-Escolar , Cromatina/química , Cromatina/genética , Citocromo P-450 CYP3A/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Idade Gestacional , Hepatócitos/enzimologia , Histonas/química , Histonas/genética , Humanos , Lactente , Fígado/embriologia , Pessoa de Meia-Idade , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Conformação Proteica , Relação Estrutura-Atividade , Transcrição Gênica
7.
Crit Rev Toxicol ; 46(1): 54-73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26517449

RESUMO

The HESI-coordinated RISK21 roadmap and matrix are tools that provide a transparent method to compare exposure and toxicity information and assess whether additional refinement is required to obtain the necessary precision level for a decision regarding safety. A case study of the use of a pyrethroid, "pseudomethrin," in bed netting to control malaria is presented to demonstrate the application of the roadmap and matrix. The evaluation began with a problem formulation step. The first assessment utilized existing information pertaining to the use and the class of chemistry. At each stage of the step-wise approach, the precision of the toxicity and exposure estimates were refined as necessary by obtaining key data which enabled a decision on safety to be made efficiently and with confidence. The evaluation demonstrated the concept of using existing information within the RISK21 matrix to drive the generation of additional data using a value-of-information approach. The use of the matrix highlighted whether exposure or toxicity required further investigation and emphasized the need to address the default uncertainty factor of 100 at the highest tier of the evaluation. It also showed how new methodology such as the use of in vitro studies and assays could be used to answer the specific questions which arise through the use of the matrix. The matrix also serves as a useful means to communicate progress to stakeholders during an assessment of chemical use.


Assuntos
Exposição Ambiental/efeitos adversos , Mosquiteiros Tratados com Inseticida/efeitos adversos , Piretrinas/toxicidade , Animais , Tomada de Decisões , Exposição Ambiental/análise , Humanos , Modelos Animais , Medição de Risco , Testes de Toxicidade , Estados Unidos , United States Environmental Protection Agency
8.
Pediatr Res ; 79(3): 409-15, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26571224

RESUMO

BACKGROUND: To characterize the ontogeny of plasma albumin and total proteins, due to the lack of a comprehensive pediatric database. Secondly, to establish the magnitude and duration of maturational changes in binding of highly-bound drugs/chemicals. METHODS: Anonymized plasma samples from 296 donors were pooled in 6 age brackets from birth to adolescence. Total protein and albumin levels were measured in each age group, as was the age-dependency of plasma binding of diazepam (DZP), cyclosporine (CYC), and deltamethrin (DLM), a pyrethroid insecticide. RESULTS: Plasma levels of albumin and total proteins steadily increased for the first 1-3 y of life. Unbound DZP and CYC fractions were elevated three- to fourfold in neonates, but decreased to adult levels after 1 and 3 y, respectively. Unbound DLM levels exceeded those in adults for just 1 mo. CONCLUSION: Neonates and infants under 1-3 y may be at risk from increased amounts of free drug, when given standard doses of some highly-bound drugs. Pyrethroid insecticides might be anticipated to pose increased risk for 1 mo.


Assuntos
Proteínas Sanguíneas/química , Ciclosporina/química , Diazepam/química , Nitrilas/química , Piretrinas/química , Albumina Sérica/química , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Ciclosporina/farmacocinética , Diazepam/farmacocinética , Feminino , Humanos , Lactente , Recém-Nascido , Inseticidas/química , Masculino , Pessoa de Meia-Idade , Nitrilas/farmacocinética , Ligação Proteica , Piretrinas/farmacocinética , Adulto Jovem
9.
Crit Rev Toxicol ; 44 Suppl 3: 1-5, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25070413

RESUMO

The Health and Environmental Sciences Institute (HESI)-coordinated Risk Assessment in the 21st Century (RISK21) project was initiated to develop a scientific, transparent, and efficient approach to the evolving world of human health risk assessment, and involved over 120 participants from 12 countries, 15 government institutions, 20 universities, 2 non-governmental organizations, and 12 corporations. This paper provides a brief overview of the tiered RISK21 framework called the roadmap and risk visualization matrix, and articulates the core principles derived by RISK21 participants that guided its development. Subsequent papers describe the roadmap and matrix in greater detail. RISK21 principles include focusing on problem formulation, utilizing existing information, starting with exposure assessment (rather than toxicity), and using a tiered process for data development. Bringing estimates of exposure and toxicity together on a two-dimensional matrix provides a clear rendition of human safety and risk. The value of the roadmap is its capacity to chronicle the stepwise acquisition of scientific information and display it in a clear and concise fashion. Furthermore, the tiered approach and transparent display of information will contribute to greater efficiencies by calling for data only as needed (enough precision to make a decision), thus conserving animals and other resources.


Assuntos
Exposição Ambiental , Nível de Saúde , Saúde Pública , Medição de Risco/métodos , Tomada de Decisões , Exposição Ambiental/efeitos adversos , Exposição Ambiental/prevenção & controle , Humanos , National Academy of Sciences, U.S. , Saúde Pública/métodos , Saúde Pública/tendências , Segurança , Reino Unido , Estados Unidos
10.
Crit Rev Toxicol ; 44 Suppl 3: 6-16, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25070414

RESUMO

Abstract The RISK21 integrated evaluation strategy is a problem formulation-based exposure-driven risk assessment roadmap that takes advantage of existing information to graphically represent the intersection of exposure and toxicity data on a highly visual matrix. This paper describes in detail the process for using the roadmap and matrix. The purpose of this methodology is to optimize the use of prior information and testing resources (animals, time, facilities, and personnel) to efficiently and transparently reach a risk and/or safety determination. Based on the particular problem, exposure and toxicity data should have sufficient precision to make such a decision. Estimates of exposure and toxicity, bounded by variability and/or uncertainty, are plotted on the X- and Y-axes of the RISK21 matrix, respectively. The resulting intersection is a highly visual representation of estimated risk. Decisions can then be made to increase precision in the exposure or toxicity estimates or declare that the available information is sufficient. RISK21 represents a step forward in the goal to introduce new methodologies into 21st century risk assessment. Indeed, because of its transparent and visual process, RISK21 has the potential to widen the scope of risk communication beyond those with technical expertise.


Assuntos
Exposição Ambiental , Substâncias Perigosas/toxicidade , Medição de Risco/métodos , Tomada de Decisões , Exposição Ambiental/efeitos adversos , Exposição Ambiental/prevenção & controle , Substâncias Perigosas/química , Humanos , Modelos Teóricos , Probabilidade , Relação Quantitativa Estrutura-Atividade , Segurança , Reino Unido , Estados Unidos , United States Environmental Protection Agency
11.
Drug Metab Dispos ; 41(2): 296-304, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23129211

RESUMO

Little information is available in the literature regarding the expression and activity of transporters in fetal human liver or cultured cells. A synthetic progesterone structural analog, 17α-hydroxyprogesterone caproate (17-OHPC), is used in the prevention of spontaneous abortion in women with a history of recurrent miscarriage (habitual abortion). 17-OHPC has been reported to traverse the placental barrier and gain access to fetal circulation. In this study, the role of transporters in the disposition of 17-OHPC in fetal and adult human hepatocytes was examined. Progesterone metabolites have been reported to induce trans-inhibition of bile acid transporter, ABCB11. Thus, we investigated the effect of 17-OHPC or its metabolites on [(3)H]taurocholic acid transport in sandwich-cultured human fetal and adult hepatocytes. 17-OHPC was taken up rapidly into the cells and transported out partially by an active efflux process that was significantly inhibited by cold temperature, cyclosporine, verapamil, and rifampin. The active efflux mechanism was observed in both adult and fetal hepatocyte cultures. 17-OHPC produced a concentration-dependent inhibition of taurocholate efflux into canaliculi in sandwich-cultured adult and fetal human hepatocytes. However, given the high concentrations required to cause inhibition of these transport processes, no adverse effects would be anticipated from therapeutic levels of 17-OHPC. We also evaluated the expression of various hepatic transporters (ABCB1, ABCB4, SLCO1B1, SLCO1B3, SLCO2B1, ABCB11, SLC10A1, ABCC2, ABCC3, ABCC4, and ABCG2) in fetal and adult hepatocytes. With the exception of ABCB4, all transporters examined were expressed, albeit at lower mRNA levels in fetal hepatocytes compared with adults.


Assuntos
Hepatócitos/metabolismo , Hidroxiprogesteronas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ácido Taurocólico/metabolismo , Caproato de 17 alfa-Hidroxiprogesterona , Adulto , Fatores Etários , Idoso , Transporte Biológico , Células Cultivadas , Temperatura Baixa , Ciclosporina/farmacologia , Feminino , Idade Gestacional , Hepatócitos/efeitos dos fármacos , Humanos , Hidroxiprogesteronas/farmacologia , Cinética , Masculino , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Proteína 2 Associada à Farmacorresistência Múltipla , RNA Mensageiro/metabolismo , Rifampina/farmacologia , Verapamil/farmacologia , Adulto Jovem
12.
Drug Metab Dispos ; 40(2): 232-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22028318

RESUMO

Glutathione transferase ζ 1 (GSTZ1), also known as maleylacetoacetate isomerase, catalyzes the penultimate step of tyrosine catabolism and metabolizes several α-halocarboxylic acids, including dichloroacetic acid (DCA), an investigational drug used for lactic acidosis and, recently, solid tumors. Age-related differences have been suggested in DCA pharmacotoxicology, but no information is available on GSTZ1 ontogeny in humans. Here, we investigated the cytosolic GSTZ1 developmental expression pattern and the influence of haplotype on GSTZ1 activity with DCA by using human livers from donors between 10 weeks gestation and 74 years. GSTZ1 expression was very low in fetal livers (<2 pmol of GSTZ1/mg cytosol). The expression began to increase after birth in an age-dependent manner until age 7 years. GSTZ1 was then sustained at stable, yet variable, levels (median, 20.0 pmol/mg cytosol; range, 4.8-47.3 pmol/mg cytosol) until age 74 years. GSTZ1 activity with DCA was strongly associated with haplotype and expression level. Samples homozygous or heterozygous for GSTZ1A exhibited ∼3-fold higher DCA dechlorinating activity than samples carrying other alleles at a given level of expression. The correlations (r²) between activity and expression were 0.90 and 0.68, respectively, for GSTZ1A carriers (n = 11) and noncarriers (n = 61). GSTZ1 is expressed in mitochondria in addition to cytosol. The GSTZ1A allele exhibited similar effects in the mitochondrial fraction by conferring a higher activity with DCA. In summary, we report a neonatal onset and an age-related increase in GSTZ1 protein expression during human liver development. Haplotype influenced GSTZ1 activity with DCA but not protein expression.


Assuntos
Antineoplásicos/metabolismo , Ácido Dicloroacético/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Glutationa Transferase/metabolismo , Fígado/enzimologia , Polimorfismo de Nucleotídeo Único , Adulto , Fatores Etários , Idoso , Substituição de Aminoácidos , Criança , Citoplasma/enzimologia , Drogas em Investigação/metabolismo , Feminino , Glutationa Transferase/genética , Halogenação , Humanos , Fígado/embriologia , Fígado/crescimento & desenvolvimento , Masculino , Pessoa de Meia-Idade , Mitocôndrias Hepáticas/enzimologia , Especificidade por Substrato , Adulto Jovem
13.
J Surg Res ; 169(1): e51-7, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21529841

RESUMO

OBJECTIVE: While it is known that gene-environment interactions contribute to necrotizing enterocolitis (NEC) pathogenesis, characterization of genetic risk-factors that can predict NEC in preterm infants remains nascent. We hypothesized that altered intestinal immune responses arising from sequence variation in the toll-like receptor (TLR) pathway genes contribute to NEC susceptibility. MATERIALS AND METHODS: Very low birth weight (VLBW) infants were recruited prospectively in a multi-center, cohort study involving collection of blood samples along with collation of clinical information. DNA obtained from blood samples was used to genotype nine single nucleotide polymorphisms (SNPs) in eight TLR pathway genes by single-base extension. Prevalence of the variant allele was compared between cases and controls using Fisher's exact test. RESULTS: In our cohort of 271 infants, 15 infants (5.6%) developed NEC, and five died from it. Infants with NEC were less mature (P < 0.001), and were more likely to be African-American (P = 0.007). SNPs in the TLR2, TLR4, TLR5, TLR9, IRAK1, and TIRAP genes were not associated with NEC. The NFKB1 (g.-24519delATTG) variant was present in all infants with NEC but only in 65% of infants without NEC (P = 0.003), while the NFKBIA (g.-1004A>G) variant was present in 13.3% of infants with NEC but in 49% of infants without NEC (P = 0.007). After correcting for multiple comparisons, the NFKB1 and NFKBIA variants remained associated with NEC (P < 0.05). CONCLUSIONS: These data suggest that TLR genetic variants can alter susceptibility to NEC in VLBW infants and support the hypothesis that genetically programmed differences in the innate immune response contribute to NEC pathogenesis.


Assuntos
Enterocolite Necrosante/genética , Recém-Nascido Prematuro , Subunidade p50 de NF-kappa B/genética , Polimorfismo de Nucleotídeo Único/genética , Estudos de Casos e Controles , Estudos de Coortes , Enterocolite Necrosante/epidemiologia , Enterocolite Necrosante/fisiopatologia , Feminino , Predisposição Genética para Doença/genética , Humanos , Incidência , Recém-Nascido , Recém-Nascido de muito Baixo Peso , Masculino , Projetos Piloto , Estudos Prospectivos , Estudos Retrospectivos , Transdução de Sinais/fisiologia , Receptores Toll-Like/fisiologia
14.
Crit Rev Toxicol ; 40(10): 893-911, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20854192

RESUMO

The public health and environmental communities will face many challenges during the next decade. To identify significant issues that might be addressed as part of the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) scientific portfolio, an expert group of key government, academic, and industry scientists from around the world were assembled in 2009 to map the current and future landscape of scientific and regulatory challenges. The value of the scientific mapping exercise was the development of a tool which HESI, individual companies, research institutions, government agencies, and regulatory authorities can use to anticipate key challenges, place them into context, and thus strategically refine and expand scientific project portfolios into the future.


Assuntos
Saúde Ambiental/legislação & jurisprudência , Diretrizes para o Planejamento em Saúde , Prioridades em Saúde/tendências , Saúde Pública/tendências , Toxicologia/tendências , Academias e Institutos , Governo , Humanos , Indústrias , Medição de Risco/tendências
15.
Artigo em Inglês | MEDLINE | ID: mdl-33184612

RESUMO

Understanding the role that the environment plays in influencing public health often involves collecting and studying large, complex data sets. There have been a number of private and public efforts to gather sufficient information and confront significant unknowns in the field of environmental public health, yet there is a persistent and largely unmet need for findable, accessible, interoperable, and reusable (FAIR) data. Even when data are readily available, the ability to create, analyze, and draw conclusions from these data using emerging computational tools, such as augmented and artificial inteligence (AI) and machine learning, requires technical skills not currently implemented on a programmatic level across research hubs and academic institutions. We argue that collaborative efforts in data curation and storage, scientific computing, and training are of paramount importance to empower researchers within environmental sciences and the broader public health community to apply AI approaches and fully realize their potential. Leaders in the field were asked to prioritize challenges in incorporating big data in environmental public health research: inconsistent implementation of FAIR principles in data collection and sharing, a lack of skilled data scientists and appropriate cyber-infrastructures, and limited understanding of possibilities and communication of benefits were among those identified. These issues are discussed, and actionable recommendations are provided.

16.
Toxicol Sci ; 176(2): 460-469, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32421774

RESUMO

The assessment of potentially sensitive populations is an important application of risk assessment. To address the concern for age-related sensitivity to pyrethroid insecticides, life-stage physiologically based pharmacokinetic (PBPK) modeling supported by in vitro to in vivo extrapolation was conducted to predict age-dependent changes in target tissue exposure to 8 pyrethroids. The purpose of this age-dependent dosimetry was to calculate a Data-derived Extrapolation Factor (DDEF) to address age-related pharmacokinetic differences for pyrethroids in humans. We developed a generic human PBPK model for pyrethroids based on our previously published rat model that was developed with in vivo rat data. The results demonstrated that the age-related differences in internal exposure to pyrethroids in the brain are largely determined by the differences in metabolic capacity and in physiology for pyrethroids between children and adults. The most important conclusion from our research is that, given an identical external exposure, the internal (target tissue) concentration is equal or lower in children than in adults in response to the same level of exposure to a pyrethroid. Our results show that, based on the use of the life-stage PBPK models with 8 pyrethroids, DDEF values are essentially close to 1, resulting in a DDEF for age-related pharmacokinetic differences of 1. For risk assessment purposes, this indicates that no additional adjustment factor is necessary to account for age-related pharmacokinetic differences for these pyrethroids.


Assuntos
Fatores Etários , Piretrinas , Medição de Risco , Animais , Humanos , Modelos Biológicos , Piretrinas/farmacocinética , Ratos
17.
Toxicol Sci ; 173(1): 86-99, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593217

RESUMO

To address concerns around age-related sensitivity to pyrethroids, a life-stage physiologically based pharmacokinetic (PBPK) model, supported by in vitro to in vivo extrapolation (IVIVE) was developed. The model was used to predict age-dependent changes in target tissue exposure of 8 pyrethroids; deltamethrin (DLM), cis-permethrin (CPM), trans-permethrin, esfenvalerate, cyphenothrin, cyhalothrin, cyfluthrin, and bifenthrin. A single model structure was used based on previous work in the rat. Intrinsic clearance (CLint) of each individual cytochrome P450 or carboxylesterase (CES) enzyme that are active for a given pyrethroid were measured in vitro, then biologically scaled to obtain in vivo age-specific total hepatic CLint. These IVIVE results indicate that, except for bifenthrin, CES enzymes are largely responsible for human hepatic metabolism (>50% contribution). Given the high efficiency and rapid maturation of CESs, clearance of the pyrethroids is very efficient across ages, leading to a blood flow-limited metabolism. Together with age-specific physiological parameters, in particular liver blood flow, the efficient metabolic clearance of pyrethroids across ages results in comparable to or even lower internal exposure in the target tissue (brain) in children than that in adults in response to the same level of exposure to a given pyrethroid (Cmax ratio in brain between 1- and 25-year old = 0.69, 0.93, and 0.94 for DLM, bifenthrin, and CPM, respectively). Our study demonstrated that a life-stage PBPK modeling approach, coupled with IVIVE, provides a robust framework for evaluating age-related differences in pharmacokinetics and internal target tissue exposure in humans for the pyrethroid class of chemicals.


Assuntos
Modelos Biológicos , Piretrinas/farmacocinética , Carboxilesterase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Dose-Resposta a Droga , Humanos , Cinética , Fígado , Microssomos Hepáticos/enzimologia , Nitrilas , Permetrina , Farmacocinética
18.
Pharmacol Ther ; 118(2): 250-67, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18406467

RESUMO

Profound changes in drug metabolizing enzyme (DME) expression occurs during development that impacts the risk of adverse drug events in the fetus and child. A review of our current knowledge suggests individual hepatic DME ontogeny can be categorized into one of three groups. Some enzymes, e.g., CYP3A7, are expressed at their highest level during the first trimester and either remain at high concentrations or decrease during gestation, but are silenced or expressed at low levels within one to two years after birth. SULT1A1 is an example of the second group of DME. These enzymes are expressed at relatively constant levels throughout gestation and minimal changes are observed postnatally. ADH1C is typical of the third DME group that are not expressed or are expressed at low levels in the fetus, usually during the second or third trimester. Substantial increases in enzyme levels are observed within the first one to two years after birth. Combined with our knowledge of other physiological factors during early life stages, knowledge regarding DME ontogeny has permitted the development of robust physiological based pharmacokinetic models and an improved capability to predict drug disposition in pediatric patients. This review will provide an overview of DME developmental expression patterns and discuss some implications of the data with regards to drug therapy. Common themes emerging from our current knowledge also will be discussed. Finally, the review will highlight gaps in knowledge that will be important to advance this field.


Assuntos
Envelhecimento/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Enzimas/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Enzimas/genética , Humanos , Oxirredutases/metabolismo , Distribuição Tecidual/genética , Distribuição Tecidual/fisiologia
19.
Toxicol Sci ; 167(2): 347-359, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30252107

RESUMO

Biotransformation rates extrapolated from in vitro data are used increasingly in human physiologically based pharmacokinetic (PBPK) models. This practice requires use of scaling factors, including microsomal content (mg of microsomal protein/g liver, MPPGL), enzyme specific content, and liver mass as a fraction of body weight (FVL). Previous analyses indicated that scaling factor variability impacts pharmacokinetic (PK) outcomes used in adult population dose-response studies. This analysis was extended to pediatric populations because large inter-individual differences in enzyme ontogeny likely would further contribute to scaling factor variability. An adult bromodichloromethane (BDCM) model (Kenyon, E. M., Eklund, C., Leavens, T. L., and Pegram, R. A. (2016a). Development and application of a human PBPK model for bromodichloromethane (BDCM) to investigate impacts of multi-route exposure. J. Appl. Toxicol. 36, 1095-1111) was re-parameterized for neonates, infants, and toddlers. Monte Carlo analysis was used to assess the impact of pediatric scaling factor variation on model-derived PK outcomes compared with adult findings. BDCM dose metrics were estimated following a single 0.05-liter drink of water or a 20-min bath, under typical (5 µg/l) and plausible higher (20 µg/l) BDCM concentrations. MPPGL, CYP2E1, and FVL values reflected the distribution of reported pediatric population values. The impact of scaling factor variability on PK outcome variation was different for each exposure scenario, but similar for each BDCM water concentration. The higher CYP2E1 expression variability during early childhood was reflected in greater variability in predicted PK outcomes in younger age groups, particularly for the oral exposure route. Sensitivity analysis confirmed the most influential parameter for this variability was CYP2E1, particularly in neonates. These findings demonstrate the importance of age-dependent scaling factor variation used for in vitro to in vivo extrapolation of biotransformation rates.


Assuntos
Exposição Ambiental/análise , Fígado/efeitos dos fármacos , Modelos Biológicos , Poluentes Químicos da Água/farmacocinética , Biotransformação , Peso Corporal/fisiologia , Pré-Escolar , Exposição Ambiental/efeitos adversos , Humanos , Lactente , Recém-Nascido , Fígado/metabolismo , Fígado/patologia , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/patologia , Método de Monte Carlo , Tamanho do Órgão/fisiologia , Distribuição Tecidual , Trialometanos/farmacocinética
20.
Environ Health Perspect ; 127(1): 14501, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30632786

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are a group of fluorinated substances of interest to researchers, regulators, and the public due to their widespread presence in the environment. A few PFASs have comparatively extensive amounts of human epidemiological, exposure, and experimental animal toxicity data (e.g., perfluorooctanoic acid), whereas little toxicity and exposure information exists for much of the broader set of PFASs. Given that traditional approaches to generate toxicity information are resource intensive, new approach methods, including in vitro high-throughput toxicity (HTT) testing, are being employed to inform PFAS hazard characterization and further (in vivo) testing. The U.S. Environmental Protection Agency (EPA) and the National Toxicology Program (NTP) are collaborating to develop a risk-based approach for conducting PFAS toxicity testing to facilitate PFAS human health assessments. This article describes the construction of a PFAS screening library and the process by which a targeted subset of 75 PFASs were selected. Multiple factors were considered, including interest to the U.S. EPA, compounds within targeted categories, structural diversity, exposure considerations, procurability and testability, and availability of existing toxicity data. Generating targeted HTT data for PFASs represents a new frontier for informing priority setting. https://doi.org/10.1289/EHP4555.


Assuntos
Fluorocarbonos/química , Fluorocarbonos/toxicidade , Toxicocinética , Substâncias Perigosas/química , Substâncias Perigosas/toxicidade , Ensaios de Triagem em Larga Escala , Estrutura Molecular , Estados Unidos , United States Environmental Protection Agency
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa