Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(23): e2121469119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35658077

RESUMO

Recent studies have revealed a surprising diversity of sex chromosomes in vertebrates. However, the detailed mechanism of their turnover is still elusive. To understand this process, it is necessary to compare closely related species in terms of sex-determining genes and the chromosomes harboring them. Here, we explored the genus Takifugu, in which one strong candidate sex-determining gene, Amhr2, has been identified. To trace the processes involved in transitions in the sex-determination system in this genus, we studied 12 species and found that while the Amhr2 locus likely determines sex in the majority of Takifugu species, three species have acquired sex-determining loci at different chromosomal locations. Nevertheless, the generation of genome assemblies for the three species revealed that they share a portion of the male-specific supergene that contains a candidate sex-determining gene, GsdfY, along with genes that potentially play a role in male fitness. The shared supergene spans ∼100 kb and is flanked by two duplicated regions characterized by CACTA transposable elements. These results suggest that the shared supergene has taken over the role of sex-determining locus from Amhr2 in lineages leading to the three species, and repeated translocations of the supergene underlie the turnover of sex chromosomes in these lineages. These findings highlight the underestimated role of a mobile supergene in the turnover of sex chromosomes in vertebrates.


Assuntos
Processos de Determinação Sexual , Takifugu , Animais , Elementos de DNA Transponíveis/genética , Evolução Molecular , Cromossomos Sexuais/genética , Processos de Determinação Sexual/genética , Takifugu/genética , Translocação Genética
2.
Mol Ecol ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38047388

RESUMO

Extinct lineages can leave legacies in the genomes of extant lineages through ancient introgressive hybridization. The patterns of genomic survival of these extinct lineages provide insight into the role of extinct lineages in current biodiversity. However, our understanding on the genomic landscape of introgression from extinct lineages remains limited due to challenges associated with locating the traces of unsampled 'ghost' extinct lineages without ancient genomes. Herein, we conducted population genomic analyses on the East China Sea (ECS) lineage of Chaenogobius annularis, which was suspected to have originated from ghost introgression, with the aim of elucidating its genomic origins and characterizing its landscape of introgression. By combining phylogeographic analysis and demographic modelling, we demonstrated that the ECS lineage originated from ancient hybridization with an extinct ghost lineage. Forward simulations based on the estimated demography indicated that the statistic γ of the HyDe analysis can be used to distinguish the differences in local introgression rates in our data. Consistent with introgression between extant organisms, we found reduced introgression from extinct lineage in regions with low recombination rates and with functional importance, thereby suggesting a role of linked selection that has eliminated the extinct lineage in shaping the hybrid genome. Moreover, we identified enrichment of repetitive elements in regions associated with ghost introgression, which was hitherto little known but was also observed in the re-analysis of published data on introgression between extant organisms. Overall, our findings underscore the unexpected similarities in the characteristics of introgression landscapes across different taxa, even in cases of ghost introgression.

3.
Mol Biol Evol ; 38(11): 4683-4699, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34311468

RESUMO

How early stages of speciation in free-spawning marine invertebrates proceed is poorly understood. The Western Pacific abalones, Haliotis discus, H. madaka, and H. gigantea, occur in sympatry with shared breeding season and are capable of producing viable F1 hybrids in spite of being ecologically differentiated. Population genomic analyses revealed that although the three species are genetically distinct, there is evidence for historical and ongoing gene flow among these species. Evidence from demographic modeling suggests that reproductive isolation among the three species started to build in allopatry and has proceeded with gene flow, possibly driven by ecological selection. We identified 27 differentiation islands between the closely related H. discus and H. madaka characterized by high FST and dA, but not high dXY values, as well as high genetic diversity in one H. madaka population. These genomic signatures suggest differentiation driven by recent ecological divergent selection in presence of gene flow outside of the genomic islands of differentiation. The differentiation islands showed low polymorphism in H. gigantea, and both high FST, dXY, and dA values between H. discus and H. gigantea, as well as between H. madaka and H. gigantea. Collectively, the Western Pacific abalones appear to occupy the early stages speciation continuum, and the differentiation islands associated with ecological divergence among the abalones do not appear to have acted as barrier loci to gene flow in the younger divergences but appear to do so in older divergences.


Assuntos
Gastrópodes , Fluxo Gênico , Animais , Especiação Genética , Genômica , Simpatria
4.
J Evol Biol ; 35(5): 763-771, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35324039

RESUMO

Selection acting across environmental gradients, such as latitudes, can cause spatial structuring of genomic variants even within panmictic populations. In this study, we focused on the within-generation latitudinal selection between northernmost and southernmost individuals of the North Pacific population of a tropical eel Anguilla marmorata, which shares its northernmost distribution with a temperate eel Anguilla japonica. Whole-genome sequencing data indicated that the northernmost and southernmost individuals of A. marmorata belong to a single panmictic population, as suggested by previous studies. On the contrary, parts of genomic regions across multiple chromosomes exhibited significant genetic differentiation between the northernmost and southernmost individuals, and in these genomic regions, the genotypes of the northernmost individuals were similar to those of A. japonica. These findings suggested within-generation latitudinal selection of A. marmorata, which might have led to genetic closeness between northernmost A. marmorata and A. japonica.


Assuntos
Anguilla , Anguilla/genética , Animais , Genômica , Genótipo , Humanos
5.
Heredity (Edinb) ; 124(1): 223-235, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31186532

RESUMO

Genetic and phenotypic analyses of independent secondary contact zones between certain pairs of divergent populations offer powerful opportunities to assess whether the consequences vary with different environmental backgrounds. Populations of the ice goby Leucopsarion petersii are distributed throughout the Japanese archipelago and comprise genetically and phenotypically divergent groups in the Japan Sea and the Pacific Ocean. In particular, populations in the Japan Sea have a larger body size and numbers of vertebrae than those in the Pacific Ocean. Herein, we performed integrated analyses of genotypes and phenotypes of two independent secondary contact zones and investigated their consequences. Population genetic analyses revealed asymmetric introgression of the mitochondrial genome of either lineage relative to little admixture of nuclear genomes in both secondary contact zones. On phenotype analyses, vertebral numbers were clearly explained by nuclear genomic ancestry in both secondary contact zones, whereas body size was not, suggesting that a little introgression of nuclear genes regulates body size. Actually, we observed biased introgression of a candidate gene, neuropeptide Y (NPY), which potentially controls body size in the ice goby. Moreover, the body size changes in the introgressed populations possibly affect the introgression patterns of mitochondrial genomes across these zones. Collectively, our results demonstrated that genomic and phenotypic consequences of secondary contact varied in marine variable environments.


Assuntos
Núcleo Celular/genética , Genética Populacional , Genoma Mitocondrial , Perciformes/genética , Animais , Tamanho Corporal , Genótipo , Japão , Neuropeptídeo Y/genética , Oceano Pacífico , Fenótipo
6.
J Invertebr Pathol ; 166: 107226, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31369734

RESUMO

During analyses of the invasive Mediterranean mussel Mytilus galloprovincialis for pathologies in Tokyo Bay, infection by the protozoan parasite Perkinsus beihaiensis was found through histological examination, Ray's Fluid Thioglycollate Medium assays, and molecular analyses. Specific PCR assays for each Perkinsus species also revealed the presence of an indigenous congeneric species, Perkinsus olseni, but P. beihaiensis was dominant in M. galloprovincialis. Sequences of the ribosomal internal transcribed spacer region I of P. beihaiensis found in Japan were genetically more similar to those found in South American countries (Panama and Brazil) than in Asian countries (China and India). Though Mediterranean mussels have become widespread in Japanese waters since their invasion in the 1930s, epidemiological surveys show that mussels collected outside Tokyo Bay are free of any Perkinsus infections. Based on these results, it was strongly suggested that P. beihaiensis invaded Tokyo Bay by transportation of bivalves originating from South America but has not yet spread to other parts of Japan. The possibility is not ruled out, however, that the parasite is indigenous in Japan but the environment in Tokyo Bay favors its transmission to Mediterranean mussels.


Assuntos
Baías/parasitologia , Mytilus/parasitologia , Infecções Protozoárias em Animais/epidemiologia , Animais , Apicomplexa/genética , Japão , Filogenia
8.
BMC Genomics ; 15: 735, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25168270

RESUMO

BACKGROUND: Understanding the genetic basis of adaptive evolution is one of the major goals in evolutionary biology. Recently, it has been revealed that gene copy number variations (GCNVs) constitute significant proportions of genomic diversities within natural populations. However, it has been unclear whether GCNVs are under positive selection and contribute to adaptive evolution. Parallel evolution refers to adaptive evolution of the same trait in related but independent lineages, and three-spined stickleback (Gasterosteus aculeatus) is a well-known model organism. Through identification of genetic variations under parallel selection, i.e., variations shared among related but independent lineages, evidence of positive selection is obtained. In this study, we investigated whole-genome resequencing data from the marine and freshwater groups of three-spined sticklebacks from diverse areas along the Pacific and Atlantic Ocean coastlines, and searched for GCNVs under parallel selection. RESULTS: We identified 24 GCNVs that showed significant differences in the numbers of mapped reads between the two groups, and this number was significantly larger than that expected by chance. The derived group, i.e., freshwater group, was typically characterized by larger gene-copy numbers, which implied that gene duplications or multiplications helped with adaptation to the freshwater environment. Some of the identified GCNVs were those of multigenic family genes, which is consistent with the theory that fatal effects due to copy-number changes of multigenic family genes tend to be less than those of single-copy genes. CONCLUSION: The identification of GCNVs that were likely under parallel selection suggests that contribution of GCNVs should be considered in studies on adaptive evolution.


Assuntos
Smegmamorpha/genética , Animais , Variações do Número de Cópias de DNA , Evolução Molecular , Proteínas de Peixes/genética , Água Doce , Deleção de Genes , Dosagem de Genes , Duplicação Gênica , Expressão Gênica , Anotação de Sequência Molecular , Fenótipo , Água do Mar , Seleção Genética
9.
Ecol Evol ; 13(2): e9816, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36818538

RESUMO

The genetic basis of speciation in free-spawning marine invertebrates is poorly understood. Although gene copy number variations (GCNVs) and nucleotide variations possibly trigger the speciation of these organisms, empirical evidence for such a hypothesis is limited. In this study, we searched for genomic signatures of GCNVs that may contribute to the speciation of Western Pacific abalone species. Whole-genome sequencing data suggested the existence of significant amounts of GCNVs in closely related abalones, Haliotis discus and H. madaka, in the early phase of speciation. In addition, the degree of interspecies genetic differentiation in the genes where GCNVs were estimated was higher than that in other genes, suggesting that nucleotide divergence also accumulates in the genes with GCNVs. GCNVs in some genes were also detected in other related abalone species, suggesting that these GCNVs are derived from both ancestral and de novo mutations. Our findings suggest that GCNVs have been accumulated in the early phase of free-spawning abalone speciation.

10.
F1000Res ; 11: 1077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262334

RESUMO

The taxon Elasmobranchii (sharks and rays) contains one of the long-established evolutionary lineages of vertebrates with a tantalizing collection of species occupying critical aquatic habitats. To overcome the current limitation in molecular resources, we launched the Squalomix Consortium in 2020 to promote a genome-wide array of molecular approaches, specifically targeting shark and ray species. Among the various bottlenecks in working with elasmobranchs are their elusiveness and low fecundity as well as the large and highly repetitive genomes. Their peculiar body fluid composition has also hindered the establishment of methods to perform routine cell culturing required for their karyotyping. In the Squalomix consortium, these obstacles are expected to be solved through a combination of in-house cytological techniques including karyotyping of cultured cells, chromatin preparation for Hi-C data acquisition, and high fidelity long-read sequencing. The resources and products obtained in this consortium, including genome and transcriptome sequences, a genome browser powered by JBrowse2 to visualize sequence alignments, and comprehensive matrices of gene expression profiles for selected species are accessible through https://github.com/Squalomix/info.


Assuntos
Tubarões , Animais , Tubarões/genética , Genoma , Vertebrados , Cromatina , Disseminação de Informação
11.
Evolution ; 75(1): 176-194, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33165944

RESUMO

Hybridization between divergent lineages generates new allelic combinations. One mechanism that can hinder the formation of hybrid populations is mitonuclear incompatibility, that is, dysfunctional interactions between proteins encoded in the nuclear and mitochondrial genomes (mitogenomes) of diverged lineages. Theoretically, selective pressure due to mitonuclear incompatibility can affect genotypes in a hybrid population in which nuclear genomes and mitogenomes from divergent lineages admix. To directly and thoroughly observe this key process, we de novo sequenced the 747-Mb genome of the coastal goby, Chaenogobius annularis, and investigated its integrative genomic phylogeographics using RNA-sequencing, RAD-sequencing, genome resequencing, whole mitogenome sequencing, amplicon sequencing, and small RNA-sequencing. Chaenogobius annularis populations have been geographically separated into Pacific Ocean (PO) and Sea of Japan (SJ) lineages by past isolation events around the Japanese archipelago. Despite the divergence history and potential mitonuclear incompatibility between these lineages, the mitogenomes of the PO and SJ lineages have coexisted for generations in a hybrid population on the Sanriku Coast. Our analyses revealed accumulation of nonsynonymous substitutions in the PO-lineage mitogenomes, including two convergent substitutions, as well as signals of mitochondrial lineage-specific selection on mitochondria-related nuclear genes. Finally, our data implied that a microRNA gene was involved in resolving mitonuclear incompatibility. Our integrative genomic phylogeographic approach revealed that mitonuclear incompatibility can affect genome evolution in a natural hybrid population.


Assuntos
Evolução Biológica , Genoma Mitocondrial , Hibridização Genética , Perciformes/genética , Animais , Japão , Filogeografia , Análise de Sequência de RNA
12.
Mol Ecol Resour ; 19(5): 1153-1163, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31009151

RESUMO

While various technologies for high-throughput genotyping have been developed for ecological studies, simple methods tolerant to low-quality DNA samples are still limited. In this study, we tested the availability of a random PCR-based genotyping-by-sequencing technology, genotyping by random amplicon sequencing, direct (GRAS-Di). We focused on population genetic analysis of estuarine mangrove fishes, including two resident species, the Amboina cardinalfish (Fibramia amboinensis, Bleeker, 1853) and the Duncker's river garfish (Zenarchopterus dunckeri, Mohr, 1926), and a marine migrant, the blacktail snapper (Lutjanus fulvus, Forster, 1801). Collections were from the Ryukyu Islands, southern Japan. PCR amplicons derived from ~130 individuals were pooled and sequenced in a single lane on a HiSeq2500 platform, and an average of three million reads was obtained per individual. Consensus contigs were assembled for each species and used for genotyping of single nucleotide polymorphisms by mapping trimmed reads onto the contigs. After quality filtering steps, 4,000-9,000 putative single nucleotide polymorphisms were detected for each species. Although DNA fragmentation can diminish genotyping performance when analysed on next-generation sequencing technology, the effect was small. Genetic differentiation and a clear pattern of isolation-by-distance was observed in F. amboinensis and Z. dunckeri by means of principal component analysis, FST and the admixture analysis. By contrast, L. fulvus comprised a genetically homogeneous population with directional recent gene flow. These genetic differentiation patterns reflect patterns of estuary use through life history. These results showed the power of GRAS-Di for fine-grained genetic analysis using field samples, including mangrove fishes.


Assuntos
Biota , Peixes/classificação , Peixes/genética , Genética Populacional/métodos , Técnicas de Genotipagem/métodos , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA/métodos , Animais , Ilhas , Japão , Água do Mar
13.
Genome Biol Evol ; 8(4): 1267-78, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27016485

RESUMO

Reliably rooted phylogenetic trees play irreplaceable roles in clarifying diversification in the patterns of species and populations. However, such trees are often unavailable in phylogeographic studies, particularly when the focus is on rapidly expanded populations that exhibit star-like trees. A fundamental bottleneck is known as the random rooting effect, where a distant outgroup tends to root an unrooted tree "randomly." We investigated whether parallel mitochondrial genome (mitogenome) sequencing alleviates this effect in phylogeography using a case study on the Sea of Japan lineage of the intertidal goby Chaenogobius annularis Eighty-three C. annularis individuals were collected and their mitogenomes were determined by high-throughput and low-cost parallel sequencing. Phylogenetic analysis of these mitogenome sequences was conducted to root the Sea of Japan lineage, which has a star-like phylogeny and had not been reliably rooted. The topologies of the bootstrap trees were investigated to determine whether the use of mitogenomes alleviated the random rooting effect. The mitogenome data successfully rooted the Sea of Japan lineage by alleviating the effect, which hindered phylogenetic analysis that used specific gene sequences. The reliable rooting of the lineage led to the discovery of a novel, northern lineage that expanded during an interglacial period with high bootstrap support. Furthermore, the finding of this lineage suggested the existence of additional glacial refugia and provided a new recent calibration point that revised the divergence time estimation between the Sea of Japan and Pacific Ocean lineages. This study illustrates the effectiveness of parallel mitogenome sequencing for solving the random rooting problem in phylogeographic studies.


Assuntos
Genoma Mitocondrial , Perciformes/genética , Filogenia , Animais , DNA Mitocondrial/genética , Genes Mitocondriais , Genética Populacional , Japão , Filogeografia , Análise de Sequência de DNA
14.
Mol Ecol Resour ; 10(6): 1106-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21565125

RESUMO

This article documents the addition of 205 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Bagassa guianensis, Bulweria bulwerii, Camelus bactrianus, Chaenogobius annularis, Creontiades dilutus, Diachasmimorpha tryoni, Dioscorea alata, Euhrychiopsis lecontei, Gmelina arborea, Haliotis discus hannai, Hirtella physophora, Melanaphis sacchari, Munida isos, Thaumastocoris peregrinus and Tuberolachnus salignus. These loci were cross-tested on the following species: Halobaena caerulea, Procellaria aequinoctialis, Oceanodroma monteiroi, Camelus ferus, Creontiades pacificus, Dioscorea rotundata, Dioscorea praehensilis, Dioscorea abyssinica, Dioscorea nummularia, Dioscorea transversa, Dioscorea esculenta, Dioscorea pentaphylla, Dioscorea trifida, Hirtella bicornis, Hirtella glandulosa, Licania alba, Licania canescens, Licania membranaceae, Couepia guianensis and 7 undescribed Thaumastocoris species.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa