Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Neuroimage ; 285: 120485, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110045

RESUMO

In recent years, deep learning approaches have gained significant attention in predicting brain disorders using neuroimaging data. However, conventional methods often rely on single-modality data and supervised models, which provide only a limited perspective of the intricacies of the highly complex brain. Moreover, the scarcity of accurate diagnostic labels in clinical settings hinders the applicability of the supervised models. To address these limitations, we propose a novel self-supervised framework for extracting multiple representations from multimodal neuroimaging data to enhance group inferences and enable analysis without resorting to labeled data during pre-training. Our approach leverages Deep InfoMax (DIM), a self-supervised methodology renowned for its efficacy in learning representations by estimating mutual information without the need for explicit labels. While DIM has shown promise in predicting brain disorders from single-modality MRI data, its potential for multimodal data remains untapped. This work extends DIM to multimodal neuroimaging data, allowing us to identify disorder-relevant brain regions and explore multimodal links. We present compelling evidence of the efficacy of our multimodal DIM analysis in uncovering disorder-relevant brain regions, including the hippocampus, caudate, insula, - and multimodal links with the thalamus, precuneus, and subthalamus hypothalamus. Our self-supervised representations demonstrate promising capabilities in predicting the presence of brain disorders across a spectrum of Alzheimer's phenotypes. Comparative evaluations against state-of-the-art unsupervised methods based on autoencoders, canonical correlation analysis, and supervised models highlight the superiority of our proposed method in achieving improved classification performance, capturing joint information, and interpretability capabilities. The computational efficiency of the decoder-free strategy enhances its practical utility, as it saves compute resources without compromising performance. This work offers a significant step forward in addressing the challenge of understanding multimodal links in complex brain disorders, with potential applications in neuroimaging research and clinical diagnosis.


Assuntos
Encefalopatias , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem , Imagem Multimodal/métodos
2.
Neuroimage ; 96: 245-60, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24680869

RESUMO

Matrix factorization models are the current dominant approach for resolving meaningful data-driven features in neuroimaging data. Among them, independent component analysis (ICA) is arguably the most widely used for identifying functional networks, and its success has led to a number of versatile extensions to group and multimodal data. However there are indications that ICA may have reached a limit in flexibility and representational capacity, as the majority of such extensions are case-driven, custom-made solutions that are still contained within the class of mixture models. In this work, we seek out a principled and naturally extensible approach and consider a probabilistic model known as a restricted Boltzmann machine (RBM). An RBM separates linear factors from functional brain imaging data by fitting a probability distribution model to the data. Importantly, the solution can be used as a building block for more complex (deep) models, making it naturally suitable for hierarchical and multimodal extensions that are not easily captured when using linear factorizations alone. We investigate the capability of RBMs to identify intrinsic networks and compare its performance to that of well-known linear mixture models, in particular ICA. Using synthetic and real task fMRI data, we show that RBMs can be used to identify networks and their temporal activations with accuracy that is equal or greater than that of factorization models. The demonstrated effectiveness of RBMs supports its use as a building block for deeper models, a significant prospect for future neuroimaging research.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Rede Nervosa/fisiologia , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão/métodos , Processos Estocásticos , Interpretação Estatística de Dados , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
3.
Front Neurosci ; 12: 600, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30294250

RESUMO

We introduce a novel recurrent neural network (RNN) approach to account for temporal dynamics and dependencies in brain networks observed via functional magnetic resonance imaging (fMRI). Our approach directly parameterizes temporal dynamics through recurrent connections, which can be used to formulate blind source separation with a conditional (rather than marginal) independence assumption, which we call RNN-ICA. This formulation enables us to visualize the temporal dynamics of both first order (activity) and second order (directed connectivity) information in brain networks that are widely studied in a static sense, but not well-characterized dynamically. RNN-ICA predicts dynamics directly from the recurrent states of the RNN in both task and resting state fMRI. Our results show both task-related and group-differentiating directed connectivity.

4.
IEEE Trans Med Imaging ; 35(7): 1729-40, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26891483

RESUMO

Linear independent component analysis (ICA) is a standard signal processing technique that has been extensively used on neuroimaging data to detect brain networks with coherent brain activity (functional MRI) or covarying structural patterns (structural MRI). However, its formulation assumes that the measured brain signals are generated by a linear mixture of the underlying brain networks and this assumption limits its ability to detect the inherent nonlinear nature of brain interactions. In this paper, we introduce nonlinear independent component estimation (NICE) to structural MRI data to detect abnormal patterns of gray matter concentration in schizophrenia patients. For this biomedical application, we further addressed the issue of model regularization of nonlinear ICA by performing dimensionality reduction prior to NICE, together with an appropriate control of the complexity of the model and the usage of a proper approximation of the probability distribution functions of the estimated components. We show that our results are consistent with previous findings in the literature, but we also demonstrate that the incorporation of nonlinear associations in the data enables the detection of spatial patterns that are not identified by linear ICA. Specifically, we show networks including basal ganglia, cerebellum and thalamus that show significant differences in patients versus controls, some of which show distinct nonlinear patterns.


Assuntos
Esquizofrenia , Encéfalo , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Neuroimagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa