Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Small ; 16(47): e2004877, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33136349

RESUMO

High efficiency and good stability are the challenges for perovskite solar cells (PSCs) toward commercialization. However, the intrinsic high defect density and internal nonradiative recombination of perovskite (PVK) limit its development. In this work, a facile additive strategy is devised by introducing bifunctional guanidine sulfamate (GuaSM; CH6 N3 + , Gua+ ; H2 N-SO3 - , SM- ) into PVK. The size of Gua+ ion is suitable with Pb(BrI)2 cavity relatively, so it can participate in the formation of low-dimensional PVK when mixed with Pb(BrI)2 . The O and N atoms of SM- can coordinate with Pb2+ . The synergistic effect of the anions and cations effectively reduces the trap density and the recombination in PVK, so that it can improve the efficiency and stability of PSCs. At an optimal concentration of GuaSM (2 mol%), the PSC presents a champion power conversion efficiency of 21.66% and a remarkably improved stability and hysteresis. The results provide a novel strategy for highly efficient and stable PSCs by bifunctional additive.

2.
Anal Chem ; 91(13): 8358-8365, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31134803

RESUMO

The presence of defect/distortion on layered structure of metal chalcogenides facilitate the higher electronic conductivity and electrocatalytic activity. In this work, we have successfully synthesized Co-doped MoSe2(CoMoSe2, Co2MoSe2, Co3MoSe2, and Co4MoSe2) in 1T phase crystal structure by using hydrothermal technique and integrated with graphene oxide (GO). Various analytical techniques such as TEM, STEM, FESEM, XRD, RAMAN, EDX, ICP, and XPS confirmed the formation of 1T phase and defective sites on Co-doped MoSe2. Consequently, the relevant electrochemical studies were followed and reported the significant enhancement in electrocatalytic activity of MoSe2 due to the Co doping and GO hybridization. The proposed GO@CoMoSe2 electrocatalyst was developed to an electrode material for electrochemical sensor and supercapacitor applications. As expected, the GO@CoMoSe2 modified glassy carbon electrode exhibited an excellent electrocatalytic activity toward the sensing of Metol (LOD, 0.009 µM; sensitivity, 2.397 µA µM-1 cm-2). Meanwhile, GO@CoMoSe2-coated nickel foam (NF) achieved feasible specific capacity (431.47 C g-1). In addition, the GO@CoMoSe2//AC asymmetric device exhibited the feasible energy density of 58.32 W h kg-1 at power density of 1800.25 W kg-1. Thus, we concluded that the Co doping and GO hybridization with MoSe2 provide the interesting idea to find out the excellent electrocatalysts with improved electrochemical performances toward the sensing and battery type supercapacitor applications.

3.
Chemistry ; 23(54): 13284-13288, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28667783

RESUMO

Iron pyrite has long been an attractive material for environmental and energy applications, but is hampered by a lack of control over morphology and purity. Hollow porous iron pyrite nanoparticles were synthesized by a direct sulfurization of iron oxide derived from Prussian blue. The high efficiencies of these hollow porous iron pyrite nanoparticles as effective dye-sensitized solar cell counter electrodes were demonstrated, with an efficiency of 7.31 %.

4.
Langmuir ; 32(24): 6123-9, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27239890

RESUMO

We demonstrate a high-resolution method as an efficient tool to in situ characterize partially reversible assembly and aggregation of metal-organic framework (MOF) colloids. Based on the gas-phase electrophoresis, the primary size and the degree of aggregation of the MOF-525 crystals are tunable by pH adjustment and mobility selection. These findings allow for the further size control of MOF colloids and prove the capability of semiquantitative analysis for the MOF-based platforms in a variety of aqueous formulations (e.g., biomedical applications).

5.
J Org Chem ; 81(2): 640-53, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26679036

RESUMO

Three benzimidazole-based isomeric organic dyes possessing two triphenylamine donors and a cyanoacrylic acid acceptor are prepared by stoichiometrically controlled Stille or Suzuki-Miyaura coupling reaction which predominantly occurs on the N-butyl side of benzimidazole due to electronic preferences. Combined with the steric effect of the N-butyl substituent, placement of the acceptor segment at various nuclear positions of benzimidazole such as C2, C4, and C7 led to remarkable variations in intramolecular charge transfer absorption, electron injection efficiency, and charge recombination kinetics. The substitution of acceptor on the C4 led to red-shifted absorption, while that on C7 retarded the charge transfer due to twisting in the structure caused by the butyl group. Because of the cross-conjugation nature and poor electronic interaction between the donor and acceptor, the dye containing triphenylamine units on C4 and C7 and the acceptor unit on C2 showed the low oxidation potential. Thus, this dye possesses favorable HOMO and LUMO energy levels to render efficient sensitizing action in solar cells. Consequently, it results in high power conversion efficiency (5.01%) in the series with high photocurrent density and open circuit voltage. The high photocurrent generation by this dye is reasoned to it exceptional charge collection efficiency as determined from the electron impedance spectroscopy.

6.
Phys Chem Chem Phys ; 18(43): 30105-30116, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27775119

RESUMO

Reported herein are six novel metal free organic dyes such as PCA1-PCA3 and PCTA1-PCTA3 featuring fused heterocyclic structural motifs such as phenothiazine and alkylcarbazole. Photophysical/electrochemical properties and nanocrystalline TiO2 based dye-sensitized solar cell performance of the same have been investigated. Electronic distribution within the molecules has been determined through a computational approach. The overall power conversion efficiencies of the devices with the utilization of dyes PCA1-PCA3 and PCTA1-PCTA3 as sensitizers ranges between 4.67 and 8.08%. The novel dyes possessing cyanoacrylic acid as electron acceptor, PCA1-PCA3, exhibit higher power conversion efficiency, short-circuit current, open-circuit voltage, and electron lifetime those with thioxothiazolidinylacetic acid, PCTA1-PCTA3, as the same. Of the devices fabricated by employing the new metal-free organic sensitizers, that with the dye PCA2 exerted a power conversion efficiency (PCE, η) of 8.08% with a short circuit current density (JSC) of 16.45 mA cm-2, an open circuit voltage (VOC) of 735 mV and a fill factor (ff) of 0.68; this PCE is the highest amongst the devices fabricated.

8.
Chemistry ; 20(32): 10052-64, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-25042065

RESUMO

The high performances of dye-sensitized solar cells (DSSCs) based on seven new dyes are disclosed. Herein, the synthesis and electrochemical and photophysical properties of a series of intentionally designed dipolar organic dyes and their application in DSSCs are reported. The molecular structures of the seven organic dyes are composed of a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron-deficient diphenylquinoxaline moiety integrated in the π-conjugated spacer between the electron donor and acceptor moieties. The DSSCs based on the dye DJ104 gave the best overall cell performance of 8.06 %; the efficiency of the DSSC based on the standard N719 dye under the same experimental conditions was 8.82 %. The spectral coverage of incident photon-to-electron conversion efficiencies extends to the onset at the near-infrared region due to strong internal charge-transfer transition as well as the effect of electron-deficient diphenylquinoxaline to lower the energy gap in these organic dyes. A combined tetraphenyl segment as a hydrophobic barrier in these organic dyes effectively slows down the charge recombination from TiO2 to the electrolyte and boosts the photovoltage, comparable to their Ru(II) counterparts. Detailed spectroscopic studies have revealed the dye structure-cell performance correlations, to allow future design of efficient light-harvesting organic dyes.

9.
Chemphyschem ; 15(6): 1175-81, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24596310

RESUMO

Highly conductive reduced graphene oxide (rGO) with good electrocatalytic ability for reducing triiodide ions (I3(-)) is a promising catalyst for the counter electrode (CE) of dye-sensitized solar cells (DSSCs). However, hazardous chemical reducing agents or energy-consuming thermal treatments are required for preparing rGO from graphene oxide (GO). Therefore, it is necessary to find other effective and green reduction processes for the preparation of rGO and to fabricate rGO-based DSSCs. In this study, GO was prepared using a modified Hummers method from graphite powder, and further reduced to rGO through a photothermal reduction process (to give P-rGO). P-rGO shows better electrocatalytic ability due mainly to its high standard heterogeneous rate constant for I3(-) reduction and in part to its considerable electrochemical surface area. The corresponding DSSC shows a higher cell efficiency (η) of 7.62% than that of the cell with a GO-based CE (η=0.03%). When the low-temperature photothermal reduction process is applied to all-flexible plastic DSSCs, the DSSC with a P-rGO CE shows an η of 4.16%.

10.
J Org Chem ; 79(7): 3159-72, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24628443

RESUMO

New organic dyes containing fluorene functionalized with two imidazole chromophores as donors and cyanoacrylic acid acceptors have been synthesized and successfully demonstrated as sensitizers in nanocrystalline TiO2-based dye-sensitized solar cells (DSSCs). The monoimidazole analogues were also synthesized for comparison. The Sommelet reaction of bromomethylated 2-bromo-9,9-diethyl-9H-fluorene produced the key precursor 7-bromo-9,9-diethyl-9H-fluorene-2,4-dicarbaldehyde required for the preparation of imidazole-functionalized fluorenes. Since the dyes possess weak donor segment, the electron-richness of the conjugation pathway dictated the optical, electrochemical, and photovoltaic properties of the dyes. The dyes served as sensitizers in DSSC and exhibited moderate efficiency up to 3.44%. The additional imidazole present on the fluorene has been found to retard the electron recombination due to the bulkier hydrophobic environment and led to high open-circuit voltage in the devices.

11.
ACS Appl Mater Interfaces ; 16(15): 18754-18767, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38563749

RESUMO

In this work, we demonstrated the synthesis of anions (X = selenium (Se), sulfur (S), and phosphorus (P)) doped cobalt oxytelluride (X-CoOTe) with oxygen and tellurium dual vacancies using hydrothermal methods, followed by selenization, sulfurization, and phosphorization reactions. Especially, the Se-CoOTe-modified nickel foam (Se-CoOTe/NF) electrode delivered a higher specific capacity (752.95 C/g) and an extremely lower charge transfer resistance (0.87 Ω) than S-CoOTe/NF and P-CoOTe/NF due to the higher metallic conductivity of Se. Both oxygen and tellurium vacancies facilitate higher charge transfer conductivity, specific capacity, and stability. On the other hand, banana stem core fiber-derived activated carbon fiber (AC) with exfoliated carbon sheet, cracked surface, and corresponding high surface area boosts the excellent cycle stability up to 4000 cycles with capacitance retention of 100.29%. Thus, the asymmetric device (Se-CoOTe/NF//AC/NF) exhibited an extendable cell voltage (1.55 V), higher energy density (155.6 W h kg-1) at a power density (1356.2 W kg-1), and generous long-term stability (100% retention up to 10 000 cycles) in a liquid alkaline electrolyte. In the practicability test, the proposed asymmetric device mutually showed an increased operating voltage from 1.55 to 4.65 V for a three-series connection. In a three-series connection, a single white LED and an LED string glowed efficiently. This new finding will be very useful to develop tellurium-based chalcogenides and biowaste-derived carbon for energy storage applications.

12.
ACS Appl Mater Interfaces ; 16(4): 4958-4974, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38241089

RESUMO

For years, solution-type electrochromic devices (ECDs) have intrigued researchers' interest and eventually rendered themselves into commercialization. Regrettably, challenges such as electrolyte leakage, high flammability, and complicated edge-encapsulation processes limit their practical utilization, hence necessitating an efficient alternate. In this quest, although the concept of solid/gel-polymer electrolyte (SPE/GPE)-based ECDs settled some issues of solution-type ECDs, an array of problems like high operating voltage, sluggish response time, and poor cycling stability have paralyzed their commercial applicability. Herein, we demonstrate a choreographed-CeO2-nanofiller-doped GPE-based ECD outperforming its solution-type counterpart in all merits. The filler-incorporated polymer electrolyte assembly was meticulously weaved through the electrospinning method, and the resultant host was employed for immobilizing electrochromic viologen species. The filler engineering benefits conceived through the tuned shape of CeO2 nanorod and quantum dots, along with the excellent redox shuttling effect of Ce3+/Ce4+, synchronously yielded an outstanding class of GPE, which upon utilization in ECDs delivered impressive electrochromic properties. A combination of features possessed by a particular device (QD-NR/PVDF-HFP/IL/BzV-Fc ECD) such as exceptionally low driving voltage (0.9 V), high transmittance change (ΔT, ∼69%), fast response time (∼1.8 s), high coloration efficiency (∼339 cm2/C), and remarkable cycling stability (∼90% ΔT-retention after 25,000 cycles) showcased a striking potential in the yet-to-realize market of GPE-based ECDs. This study unveils the untapped potential of choreographed nanofillers that can promisingly drive GPE-based ECDs to the doorstep of commercialization.

13.
ACS Appl Mater Interfaces ; 16(3): 3476-3488, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38207165

RESUMO

In this study, a trimetallic selenide material with a hollow spherical structure (Co9Se8-CuSe2-WSe2) was synthesized through two consecutive solvothermal reactions. The synergistic effect between the quaternary elements, the benefits of the selenization of metals, and the unique morphology led to the prominent electrocatalytic ability of Co9Se8-CuSe2-WSe2 hollow spheres. Co9Se8-CuSe2-WSe2 hollow spheres were then mixed with oxygen plasma-treated multiwalled carbon nanotubes (MWCNT) as counter electrode (CE) material for dye-sensitized solar cells (DSSCs), achieving a photoelectric conversion efficiency (η) of 9.23% under one sun condition (AM 1.5G, 100 mW cm-2), surpassing the 8.08% of devices with platinum counter electrodes (PtCEs). For indoor conditions, a T5 light source was applied to the DSSCs with Co9Se8-CuSe2-WSe2 + MWCNT CE, and the efficiency increased to 14.14% under 3600 lx irradiance. Finally, Co9Se8-CuSe2-WSe2 + MWCNT CE demonstrated good stability with 92.23% retention after 1000 cycles of cyclic voltammetry, exceeding the 82.49% of PtCE. Therefore, Co9Se8-CuSe2-WSe2 + MWCNT shows potential as a substitute for platinum as CE material for DSSCs.

14.
ACS Appl Mater Interfaces ; 15(21): 25791-25805, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37205840

RESUMO

Nanofillers' applicability in gel polymer electrolyte (GPE)-based devices skyrocketed in the last decade as soon as their remarkable benefits were realized. However, their applicability in GPE-based electrochromic devices (ECDs) has hardly seen any development due to challenges such as optical inhomogeneity brought by incompetent nanofiller sizes, transmittance drop due to higher filler loading (usually required), and poor methodologies of electrolyte fabrication. To address such issues, herein, we demonstrate a reinforced polymer electrolyte tailored through poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP),1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4), and four types of mesoporous SiO2 nanofillers, porous (distinct morphologies) and nonporous, two each. The synthesized electrochromic species 1,1'-bis(4-fluorobenzyl)-4,4'-bipyridine-1,1'-diium tetrafluoroborate (BzV, 0.05 M), counter redox species ferrocene (Fc, 0.05 M), and supporting electrolyte (TBABF4, 0.5 M) were first dissolved in propylene carbonate (PC) and then immobilized in an electrospun PVDF-HFP/BMIMBF4/SiO2 host. We distinctly observed that spherical (SPHS) and hexagonal pore (MCMS) morphologies of fillers endowed higher transmittance change (ΔT) and coloration efficiency (CE) in utilized ECDs; particularly for the MCMS-incorporated ECD (GPE-MCMS/BzV-Fc ECD), ΔT reached ∼62.5% and CE soared to 276.3 cm2/C at 603 nm. The remarkable benefit of filler's hexagonal morphology was also seen in the GPE-MCMS/BzV-Fc ECD, which not only marked an astounding ionic conductivity (σ) of ∼13.5 × 10-3 S cm-1 at 25 °C, thus imitating the solution-type ECD's behavior, but also retained ∼77% of initial ΔT after 5000 switching cycles. The enhancement in ECD's performance resulted from merits brought by filler geometries such as the proliferation of Lewis acid-base interaction sites due to the high surface-to-volume ratio, the creation of percolating tunnels, and the emergence of capillary forces triggering facile ion transportation in the electrolyte matrix.

15.
J Colloid Interface Sci ; 648: 193-202, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301144

RESUMO

High energy resource demand has led to the rapid development of hydrogen as a clean fuel through electrolytic water splitting. The exploration of high-performance and cost-effective electrocatalysts for water splitting is a challenging task to obtain renewable and clean energy. However, the sluggish kinetics of oxygen evolution reaction (OER) greatly hindered its application. Herein, a novel oxygen plasma-treated graphene quantum dots embedded Ni-Fe Prussian blue analogue (O-GQD-NiFe PBA) is proposed as a highly active electrocatalysts for OER. Furthermore, the defect induced by GQD can provide an abundant lattice mismatch in the matrix of NiFe PBA, which further facilitates faster electron transport and kinetic performance. After optimization, the as-assembled O-GQD-NiFe PBA exhibits excellent electrocatalytic performance towards OER with a low overpotential of 259 mV for reaching a current density of 10 mA cm-2 and impressive long-term stability for 100 h in an alkaline solution. This work broadens the scope of metal-organic frameworks (MOF) and high-functioning carbon composite as an active material for energy conversion systems.

16.
Opt Express ; 20 Suppl 2: A168-76, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22418665

RESUMO

This paper reports the enhanced performance of dye-sensitized solar cells (DSSCs) with microcavity-embedded nanoporous TiO2 photoanodes. For DSSCs with photoanodes composed of a stack TiO2 sublayers with microcavity concentrations arranged from low to high on the light illumination path, the short-circuit current density and the conversion efficiency were improved. A pronounced increase in optical absorption and incident monochromatic photon-to-current conversion efficiency in the long-wavelength region indicated that the enhancement of cell performance was due to the multiple scattering of light by the microcavities and the light confinement by the stack of TiO2 sublayers with a high-to-low effective index of refraction.

17.
Chemistry ; 18(38): 12085-95, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22890837

RESUMO

We report here the synthesis and electrochemical and photophysical properties of a series of easily prepared dipolar organic dyes and their application in dye-sensitized solar cells (DSSCs). For the six organic dyes, the molecular structures comprised a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron-deficient diphenylquinoxaline moiety integrated in the π-conjugated spacer between the electron donor and acceptor moieties. The incorporation of the electron-deficient diphenylquinoxaline moiety effectively reduces the energy gap of the dyes and broadly extends the spectral coverage. DSSCs based on dye 6 produced the best overall cell performance of 7.35 %, which translates to approximately 79 % of the intrinsic efficiency of the DSSCs based on the standard N719 dye under identical experimental conditions. The high performance of DSSCs based on dye 6 among the six dyes explored is attributed to the combined effects of high dye loading on a TiO(2) surface, rapid dye regeneration, and effective retardation of charge recombination.

18.
Phys Chem Chem Phys ; 14(41): 14099-109, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22735398

RESUMO

Dye-sensitized solar cells are a promising solar technology because of their low cost, reliability, and high efficiency, compared with silicon-based solar cells. Efforts over the last two decades have increased solar cell efficiency to 12% based on liquid electrolytes, and more research on solid-state devices is necessary to determine their practical usage and long-term stability. The development of solid-state devices has achieved an overall efficiency over 7% using hole transporting materials. This study reviews current progress on hole transporting materials, sensitizers, and mesoporous TiO(2) in solid-state dye-sensitized solar cells using small organic molecules as the hole transporting material. This study also discusses the key factors, such as molecular structure design and interfacial problems, affecting device performance.

19.
Nanomaterials (Basel) ; 12(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432327

RESUMO

Flower-like phosphorus-doped nickel oxide (P-NiO) is proposed as a counter electrode (CE) for dye-sensitized solar cells (DSSCs). The flower-like nickel oxide essentially serves as the matrix for the CE, which is expected to promote a two-dimensional electron transport pathway. The phosphorus is intended to improve the catalytic ability by creating more active sites in the NiO for the catalysis of triiodide ions (I3-) to iodide ions (I-) on the surface of the CE. The P-NiO is controlled by a sequencing of precursor concentration, which allows the P-NiO to possess different features. The debris aggregation occurs in the P-NiO-1, while the P-NiO-0.75 leads to the incomplete flower-like nanosheets. The complete flower-like morphology can be observed in the P-NiO-0.5, P-NiO-0.25 and P-NiO-0.1 catalytic electrodes. The DSSC with the P-NiO-0.5 CE achieves a power conversion efficiency (η) of 9.05%, which is better than that of the DSSC using a Pt CE (η = 8.51%); it also performs better than that with the Pt CE, even under rear illumination and dim light conditions. The results indicate the promising potential of the P-NiO CE to replace the expensive Pt CE.

20.
J Org Chem ; 76(12): 4910-20, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21557605

RESUMO

New organic dyes containing a diarylaminofluorene unit as an electron donor and cyanoacrylic acid as acceptor and anchoring group in a donor-π-donor-π-acceptor architecture have been synthesized and characterized as sensitizers for nanocrystalline TiO(2)-based dye-sensitized solar cells. They have shown three major electronic absorptions originating from the π-π* and charge-transfer transitions covering the broad visible range (250-550 nm) in solution. The charge-transfer transition of the dyes exhibited negative solvatochromism, suggesting a polarized ground state. They have also displayed acidochromism in solution owing to the presence of a protonation-deprotonation equilibrium. On comparison with the triphenylamine and carbazole-based parent dyes (E)-2-cyano-3-(4-(diphenylamino)phenyl)acrylic acid and (E)-2-cyano-3-(9-ethyl-9H-carbazol-3-yl)acrylic acid they exhibited longer wavelength absorptions and facile oxidation, indicating the stronger electron-donating ability of the auxiliary chromophores. In addition, they exhibited nearly two times larger light-to-electron conversion efficiency under simulated AM 1.5 G irradiation (100 mW cm(-2)) with an aperture mask when compared to the parent dyes. Among the new dyes, the one containing the naphthylphenylamine segment showed better device characteristics attributable to the higher HOMO energy level which probably facilitates the regeneration of the dye and effective suppression of the back reaction of the injected electrons with the I(3)(-) in the electrolyte. The optical properties of the dyes were modeled using TDDFT simulations employing different theoretical models (B3LYP, CAM-B3LYP, and MPW1K), and the best correlations with the observed parameters have been found for CAM-B3LYP and MPW1K calculations. The electron lifetimes extracted from the electrochemical impedance measurements of the dye-sensitized solar cells were used to interpret the solar cell efficiency alternations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa