Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 146(6): 931-41, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21925316

RESUMO

The eukaryotic replicative DNA helicase, CMG, unwinds DNA by an unknown mechanism. In some models, CMG encircles and translocates along one strand of DNA while excluding the other strand. In others, CMG encircles and translocates along duplex DNA. To distinguish between these models, replisomes were confronted with strand-specific DNA roadblocks in Xenopus egg extracts. An ssDNA translocase should stall at an obstruction on the translocation strand but not the excluded strand, whereas a dsDNA translocase should stall at obstructions on either strand. We found that replisomes bypass large roadblocks on the lagging strand template much more readily than on the leading strand template. Our results indicate that CMG is a 3' to 5' ssDNA translocase, consistent with unwinding via "steric exclusion." Given that MCM2-7 encircles dsDNA in G1, the data imply that formation of CMG in S phase involves remodeling of MCM2-7 from a dsDNA to a ssDNA binding mode.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , DNA/metabolismo , Xenopus/metabolismo , Animais , DNA de Cadeia Simples/metabolismo , Modelos Biológicos , Fase S
2.
Nucleic Acids Res ; 39(17): 7455-64, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21666254

RESUMO

DNA interstrand crosslinks (ICLs), inhibit DNA metabolism by covalently linking two strands of DNA and are formed by antitumor agents such as cisplatin and nitrogen mustards. Multiple complex repair pathways of ICLs exist in humans that share translesion synthesis (TLS) past a partially processed ICL as a common step. We have generated site-specific major groove ICLs and studied the ability of Y-family polymerases and Pol ζ to bypass ICLs that induce different degrees of distortion in DNA. Two main factors influenced the efficiency of ICL bypass: the length of the dsDNA flanking the ICL and the length of the crosslink bridging two bases. Our study shows that ICLs can readily be bypassed by TLS polymerases if they are appropriately processed and that the structure of the ICL influences which polymerases are able to read through it.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Antineoplásicos/toxicidade , Cisplatino/toxicidade , Reagentes de Ligações Cruzadas/toxicidade , DNA/química , DNA/efeitos dos fármacos , DNA/metabolismo , Nucleotídeos de Desoxicitosina/metabolismo , Mecloretamina/toxicidade , Conformação de Ácido Nucleico , Nucleotidiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Moldes Genéticos
3.
Mol Cell Biol ; 24(16): 6907-18, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15282293

RESUMO

Centromeres form specialized chromatin structures termed kinetochores which are required for accurate segregation of chromosomes. DNA lesions might disrupt protein-DNA interactions, thereby compromising segregation and genome stability. We show that yeast centromeres are heavily resistant to removal of UV-induced DNA lesions by two different repair systems, photolyase and nucleotide excision repair. Repair resistance persists in G(1)- and G(2)/M-arrested cells. Efficient repair was obtained only by disruption of the kinetochore structure in a ndc10-1 mutant, but not in cse4-1 and cbf1 Delta mutants. Moreover, UV photofootprinting and DNA repair footprinting showed that centromere proteins cover about 120 bp of the centromere elements CDEII and CDEIII, including 20 bp of flanking CDEIII. Thus, DNA lesions do not appear to disrupt protein-DNA interactions in the centromere. Maintaining a stable kinetochore structure seems to be more important for the cell than immediate removal of DNA lesions. It is conceivable that centromeres are repaired by postreplication repair pathways.


Assuntos
Centrômero/metabolismo , Reparo do DNA , DNA/efeitos da radiação , Cinetocoros/metabolismo , Saccharomyces cerevisiae/genética , Raios Ultravioleta/efeitos adversos , Sequência de Bases , Ciclo Celular/fisiologia , Dano ao DNA , Pegada de DNA , Desoxirribodipirimidina Fotoliase/metabolismo , Relação Dose-Resposta à Radiação , Dados de Sequência Molecular , Mutação , Saccharomyces cerevisiae/metabolismo
4.
Methods Mol Biol ; 920: 203-19, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22941606

RESUMO

Plasmids containing a site-specific DNA interstrand cross-link (ICL) are invaluable tools for the investigation of ICL repair pathways at the biochemical and cellular level. We describe a procedure for preparation of plasmid DNA substrates containing a single ICL at a specific site. The procedure is versatile, leads to reliable yields of pure DNA substrate, and is suitable for the incorporation of virtually any type of DNA lesion into plasmids.


Assuntos
Reagentes de Ligações Cruzadas/farmacologia , DNA/química , DNA/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Sequência de Bases , Cisplatino/farmacologia , DNA/genética , Adutos de DNA/metabolismo , Reparo do DNA/efeitos dos fármacos , Enzimas de Restrição do DNA/metabolismo
5.
Environ Mol Mutagen ; 51(6): 552-66, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20658647

RESUMO

DNA interstrand crosslinks (ICLs) are induced by a number of bifunctional antitumor drugs such as cisplatin, mitomycin C, or the nitrogen mustards as well as endogenous agents formed by lipid peroxidation. The repair of ICLs requires the coordinated interplay of a number of genome maintenance pathways, leading to the removal of ICLs through at least two distinct mechanisms. The major pathway of ICL repair is dependent on replication, homologous recombination, and the Fanconi anemia (FA) pathway, whereas a minor, G0/G1-specific and recombination-independent pathway depends on nucleotide excision repair. A central step in both pathways in vertebrates is translesion synthesis (TLS) and mutants in the TLS polymerases Rev1 and Pol zeta are exquisitely sensitive to crosslinking agents. Here, we review the involvement of Rev1 and Pol zeta as well as additional TLS polymerases, in particular, Pol eta, Pol kappa, Pol iota, and Pol nu, in ICL repair. Biochemical studies suggest that multiple TLS polymerases have the ability to bypass ICLs and that the extent ofbypass depends upon the structure as well as the extent of endo- or exonucleolytic processing of the ICL. As has been observed for lesions that affect only one strand of DNA, TLS polymerases are recruited by ubiquitinated proliferating nuclear antigen (PCNA) to repair ICLs in the G0/G1 pathway. By contrast, this data suggest that a different mechanism involving the FA pathway is operative in coordinating TLS in the context of replication-dependent ICL repair.


Assuntos
Reparo do DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , DNA/biossíntese , Animais , Reagentes de Ligações Cruzadas/farmacologia , Reparo do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/genética , Humanos , Modelos Moleculares
6.
Science ; 326(5960): 1698-701, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19965384

RESUMO

Fanconi anemia is a human cancer predisposition syndrome caused by mutations in 13 Fanc genes. The disorder is characterized by genomic instability and cellular hypersensitivity to chemicals that generate DNA interstrand cross-links (ICLs). A central event in the activation of the Fanconi anemia pathway is the mono-ubiquitylation of the FANCI-FANCD2 complex, but how this complex confers ICL resistance remains enigmatic. Using a cell-free system, we showed that FANCI-FANCD2 is required for replication-coupled ICL repair in S phase. Removal of FANCD2 from extracts inhibits both nucleolytic incisions near the ICL and translesion DNA synthesis past the lesion. Reversal of these defects requires ubiquitylated FANCI-FANCD2. Our results show that multiple steps of the essential S-phase ICL repair mechanism fail when the Fanconi anemia pathway is compromised.


Assuntos
Reparo do DNA , Replicação do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Sistema Livre de Células , Cromatina/metabolismo , DNA/biossíntese , Dano ao DNA , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Dados de Sequência Molecular , Proteínas Recombinantes/metabolismo , Fase S , Transdução de Sinais , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa