Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 321(6): G682-G689, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34668398

RESUMO

Tissue injury healing is impaired in aging, and this impairment is caused in part by reduced angiogenesis. Melatonin, a neuroendocrine hormone that regulates sleep and circadian rhythm, is also produced in the gastrointestinal tract. The expression of melatonin receptors MT1 and MT2 in gastric endothelial cells and their roles in aging-related impairment of gastric angiogenesis have not been examined. We hypothesized that MT1 and MT2 expression is reduced in gastric endothelial cells of aging rats and that melatonin treatment can upregulate their expression and improve angiogenesis. We examined the expression of MT1 and MT2 in gastric endothelial cells (GECs) isolated from young and aging rats. We also examined the effects of melatonin treatment on angiogenesis, GEC mitochondrial function, expression of vascular endothelial growth factor (VEGF), its signaling receptor (VEGFR-2), and the inhibitor of apoptosis protein, survivin. Young and aging GECs expressed MT1 (in the cytoplasm and mitochondria) and MT2 (in nucleus and mitochondria). In aging GECs, MT1 and MT2 levels, in vitro angiogenesis, and mitochondrial membrane potential were significantly reduced (by 1.5-fold, 1.9-fold, 3.1-fold, and 1.63-fold, respectively) compared with young GECs. Melatonin treatment of aging GECs significantly increased MT1 and MT2 expression compared with the controls, induced nuclear translocation of MT1, and significantly ameliorated the aging-related impairment of angiogenesis and mitochondrial function. Aging GECs have significantly reduced MT1 and MT2 expression, angiogenesis, and mitochondrial membrane potential compared with young GECs. Treatment of aging GECs with melatonin increases expression of VEGF receptor and survivin and ameliorates aging-related impaired angiogenesis and mitochondrial function.NEW & NOTEWORTHY This study showed reduced expression of melatonin receptors MT1 and MT2, angiogenesis, and mitochondrial function in gastric endothelial cells (GECs) isolated from aging rats. Treatment of aging GECs with melatonin increases expression of VEGF receptor and survivin and ameliorates aging-related impaired angiogenesis and mitochondrial function. These studies provide new insight into the mechanisms of the aging-related impairment of angiogenesis and delayed tissue injury healing and provide a rationale for melatonin treatment to reverse these abnormalities.


Assuntos
Indutores da Angiogênese/farmacologia , Células Endoteliais/efeitos dos fármacos , Mucosa Gástrica/irrigação sanguínea , Melatonina/farmacologia , Mitocôndrias/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Survivina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores Etários , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Mitocôndrias/metabolismo , Ratos Endogâmicos F344 , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/agonistas , Receptor MT2 de Melatonina/metabolismo , Transdução de Sinais
2.
J Cell Biochem ; 120(7): 11651-11659, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30790334

RESUMO

Gastric epithelial cells are important components of mucosal protection and targets of nonsteroidal anti-inflammatory drugs (NSAIDs)-induced injury. Diclofenac (DFN) is one of the most widely used NSAIDs; however, even its short-term use can induce gastric erosions and ulcers. Nerve growth factor (NGF) has been reported to act not only on neuronal cells but also on endothelial cells; however, its action on gastric epithelial cells is unknown. This study was aimed to determine, whether NGF can protect gastric epithelial cells against DFN-induced injury, and to determine the underlying molecular mechanisms with a focus on mitochondria, survivin, and insulin-like growth factor 1 (IGF-1). Cultured normal rat gastric mucosal epithelial cells 1 (RGM1) were treated with phosphate-buffered saline (PBS; control), NGF (100 ng/mL) and/or DFN (0.25-1.00 mM) for 4 hours. We examined: (1) cell injury by confocal microscopy; (2) cell death/survival using Calcein AM live cell tracking dye; (3) mitochondrial structure and membrane potential function using MitoTracker in live cells; and (4) expression of NGF, its receptor - tropomyosin receptor kinase A (TrkA), survivin and IGF-1 by immunostaining. DFN treatment of RGM1 cells for 4 hours caused extensive cell injury, mitochondrial disintegration, reduced cell viability (from 94 ± 3% in controls to 14 ± 4% in 0.5 mM DFN-treated cells; P < 0.001), and expression of survivin and IGF-1. NGF treatment significantly increased survivin and IGF-1 expression by 41% and 75%, respectively versus PBS controls. Pretreatment with NGF before DFN treatment reduced mitochondrial damage and cell death by 73% and 82%, respectively versus treatment with DFN alone (all P < 0.001). This study also showed the presence of high-affinity TrkA receptors in the plasma membrane and mitochondria of RGM1 cells indicating novel actions of NGF.

3.
Am J Physiol Gastrointest Liver Physiol ; 317(6): G862-G871, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31545918

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAIDs) such as diclofenac (DFN) and indomethacin (INDO) are extensively used worldwide. Their main side effects are injury of the gastrointestinal tract, including erosions, ulcers, and bleeding. Since gastric epithelial cells (GEPCs) are crucial for mucosal defense and are the major target of injury, we examined the extent to which DFN- and INDO-induced GEPC injury can be reversed by nerve growth factor (NGF), 16,16 dimethyl prostaglandin E2 (dmPGE2), and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), the pharmacological activator of the metabolic sensor AMP kinase (AMPK). Cultured normal rat gastric mucosal epithelial (RGM1) cells were treated with PBS (control), NGF, dmPGE2, AICAR, and/or NSAID (DFN or INDO) for 1-4 h. We examined cell injury by confocal microscopy, cell death/survival using calcein AM, mitochondrial membrane potential using MitoTracker, and phosphorylation of AMPK by Western blotting. DFN and INDO treatment of RGM1 cells for 2 h decreased mitochondrial membrane potential and cell viability. NGF posttreatment (initiated 1 or 2 h after DFN or INDO) reversed the dissipation of mitochondrial membrane potential and cell injury caused by DFN and INDO and increased cell viability versus cells treated for 4 h with NSAID alone. Pretreatment with dmPGE2 and AICAR significantly protected these cells from DFN- and INDO-induced injury, whereas dmPGE2 and AICAR posttreatment (initiated 1 h after NSAID treatment) reversed cell injury and significantly increased cell viability and rescued the cells from NSAID-induced mitochondrial membrane potential reduction. DFN and INDO induce extensive mitochondrial injury and GEPC death, which can be significantly reversed by NGF, dmPGE2, and AICAR.NEW & NOTEWORTHY This study demonstrated that mitochondria are key targets of diclofenac- and indomethacin-induced injury of gastric epithelial cells and that diclofenac and indomethacin injury can be prevented and, importantly, also reversed by treatment with nerve growth factor, 16,16 dimethyl prostaglandin E2, and 5-aminoimidazole-4-carboxamide ribonucleotide.


Assuntos
16,16-Dimetilprostaglandina E2/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Diclofenaco/efeitos adversos , Mucosa Gástrica , Indometacina/efeitos adversos , Mitocôndrias , Fator de Crescimento Neural/farmacologia , Ribonucleosídeos/farmacologia , Aminoimidazol Carboxamida/farmacologia , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/farmacologia , Antiulcerosos/farmacologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos
5.
Apoptosis ; 19(9): 1378-88, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24874838

RESUMO

Regular usage of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with reduced incidence of a variety of cancers. The molecular mechanisms underlying these chemopreventive effects remain poorly understood. This current investigation showed that in gastric cancer cells: (1) Indomethacin treatment enhanced the degradation of chromosomal passenger proteins, Survivin and Aurora B kinase; (2) Indomethacin treatment down-regulated Aurora B kinase activity in a cell cycle-independent fashion; (3) siRNA knockdown of Survivin level promoted Aurora B kinase protein degradation, and vice versa; (4) ectopic overexpression of Survivin blocked reduction of Aurora B kinase level and activity by indomethacin treatment, and vice versa; (5) siRNA knockdown of Aurora B kinase level and AZD1152 inhibition of its activity induced apoptosis, and overexpression of Aurora B kinase inhibited indomethacin-induced apoptosis; (6) indomethacin treatment reduced Aurora B kinase level, coinciding with reduction of Survivin level and induction of apoptosis, in KATO III and HT-29 cells, and in mouse gastric mucosa. A role for Aurora B kinase function in NSAID-induced apoptosis was not previously explored. Thus this report provides better understanding of the molecular mechanisms underlying the anti-cancer effect of NSAIDs by elucidating a significant role for Aurora B kinase in indomethacin-induced apoptosis.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Anticarcinógenos/farmacologia , Apoptose/efeitos dos fármacos , Aurora Quinase B/metabolismo , Carcinoma/patologia , Indometacina/farmacologia , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias Gástricas/patologia , Animais , Aurora Quinase B/genética , Carcinoma/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Humanos , Proteínas Inibidoras de Apoptose/genética , Camundongos Endogâmicos C57BL , Organofosfatos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Neoplasias Gástricas/metabolismo , Survivina
6.
J Immunol ; 189(5): 2625-34, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22844111

RESUMO

Big potassium (BK) ion channels have several spliced variants. One spliced variant initially described within human glioma cells is the glioma BK (gBK) channel. This isoform consists of 34 aa inserted into the intracellular region of the basic BK ion channel. PCR primers specific for this inserted region confirmed that human glioma cell lines and freshly resected surgical tissues from glioblastoma multiforme patients strongly expressed gBK mRNA. Normal human brain tissue very weakly expressed this transcript. An Ab specific for this gBK isoform confirmed that human glioma cells displayed this protein in the cell membrane, mitochondria, Golgi, and endoplasmic reticulum. Within the gBK region, two putative epitopes (gBK1 and gBK2) are predicted to bind to the HLA-A*0201 molecule. HLA-A*0201-restricted human CTLs were generated in vitro using gBK peptide-pulsed dendritic cells. Both gBK1 and gBK2 peptide-specific CTLs killed HLA-A2⁺/gBK⁺ gliomas, but they failed to kill non-HLA-A2-expressing but gBK⁺ target cells in cytolytic assays. T2 cells loaded with exogenous gBK peptides, but not with the influenza M1 control peptide, were only killed by their respective CTLs. The gBK-specific CTLs also killed a variety of other HLA-A*0201⁺ cancer cells that possess gBK, as well as HLA-A2⁺ HEK cells transfected with the gBK gene. Of clinical relevance, we found that T cells derived from glioblastoma multiforme patients that were sensitized to the gBK peptide could also kill target cells expressing gBK. This study shows that peptides derived from cancer-associated ion channels maybe useful targets for T cell-mediated immunotherapy.


Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/uso terapêutico , Glioma/imunologia , Glioma/terapia , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/uso terapêutico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Testes Imunológicos de Citotoxicidade , Epitopos de Linfócito T/biossíntese , Glioblastoma/imunologia , Glioblastoma/patologia , Glioblastoma/terapia , Glioma/patologia , Células Hep G2 , Humanos , Imunoterapia Ativa/métodos , Canais de Potássio Ativados por Cálcio de Condutância Alta/biossíntese , Invasividade Neoplásica , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia
7.
Int Immunopharmacol ; 114: 109491, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36462335

RESUMO

Paraptosis is the programmed cell death pathway that leads to cellular necrosis. Manystudies have shown that prolonged paraptosis activation improves tumorimmunogenicity; this treatment reproduces the vaccinating effects of mM-CSFtransduced cells. In this short communication, we want to highlight the paraptosisprocess as a valuable strategy for clinical immunotherapy against cancer.


Assuntos
Apoptose , Humanos , Linhagem Celular Tumoral , Necrose
8.
Arch Biochem Biophys ; 525(1): 60-70, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22684023

RESUMO

Cysteamine, a coenzyme A metabolite, induces duodenal ulcers in rodents. Our recent studies showed that ulcer formation was aggravated by iron overload and diminished in iron deficiency. We hypothesized that cysteamine is selectively taken up in the duodenal mucosa, where iron absorption primarily occurs, and is transported by a carrier-mediated process. Here we report that cysteamine administration in rats leads to cysteamine accumulation in the proximal duodenum, where the highest concentration of iron in the gastrointestinal tract is found. In vitro, iron loading of intestinal epithelial cells (IEC-6) accelerated reactive oxygen species (ROS) production and increased [(14)C]cysteamine uptake. [(14)C]Cysteamine uptake by isolated gastrointestinal mucosal cells and by IEC-6 was pH-dependent and inhibited by unlabeled cysteamine. The uptake of [(14)C]cysteamine by IEC-6 was Na(+)-independent, saturable, inhibited by structural analogs, H(2)-histamine receptor antagonists, and organic cation transporter (OCT) inhibitors. OCT1 mRNA was markedly expressed in the rat duodenum and in IEC-6, and transfection of IEC-6 with OCT1 siRNA decreased OCT1 mRNA expression and inhibited [(14)C]cysteamine uptake. Cysteamine-induced duodenal ulcers were decreased in OCT1/2 knockout mice. These studies provide new insights into the mechanism of cysteamine absorption and demonstrate that intracellular iron plays a critical role in cysteamine uptake and in experimental duodenal ulcerogenesis.


Assuntos
Cisteamina/metabolismo , Úlcera Duodenal/metabolismo , Duodeno/metabolismo , Ferro/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Cistamina/metabolismo , Cisteamina/análogos & derivados , Cisteamina/farmacologia , Desferroxamina/farmacologia , Úlcera Duodenal/patologia , Duodeno/efeitos dos fármacos , Duodeno/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ferro/farmacologia , Quelantes de Ferro/farmacologia , Camundongos , Especificidade de Órgãos , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/deficiência , Proteínas de Transporte de Cátions Orgânicos/genética , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sódio/metabolismo
9.
J Immunol ; 185(8): 4793-803, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20855883

RESUMO

Gliomas are invasive cancers that resist all forms of attempted therapy. Immunotherapy using Ag-pulsed dendritic cells has improved survival in some patients. We present evidence that another level of complexity may also contribute to lack of responses by the lymphocytes toward gliomas. Atomic force microscopy of four different glioma types-human U251 and rat T9 and F98 glioma cells, including freshly isolated human glioblastoma multiforme neurosphere cultures (containing "stem cell-like cells")-revealed a complex surface topography with numerous microvilli and filopodia. These structures were not found on other cell types. Electron microscopy and immunofluorescence microscopy of glioma cells confirmed that microvilli are present. U251 cells with microvilli resisted the cytolytic actions of different human effector cells, (lymphokine-activated killer cells, γδ T cells, conventional CTLs, and chimeric Ag-receptor-redirected T cells) better than their nonmicrovilli-expressing counterparts. Killer lymphocytes released perforin, which was detected within the glioma's microvilli/filopodia, indicating these structures can receive the cytolytic effector molecules, but cytotoxicity is suboptimal. Air-dried gliomas revealed nodes within the microvilli/filopodia. The microvilli that penetrated 0.4-µm transwell chamber's pores resisted the actions of CTLs and physical damage. Those nodelike structures may represent a compartmentalization that resists physical damage. These microvilli may play multiple roles in glioma biology, such as invasion and resistance to lymphocyte-mediated killing.


Assuntos
Membrana Celular/ultraestrutura , Citotoxicidade Imunológica/imunologia , Glioma/imunologia , Glioma/ultraestrutura , Evasão Tumoral , Animais , Linhagem Celular Tumoral , Imunofluorescência , Humanos , Células Matadoras Ativadas por Linfocina/imunologia , Microscopia de Força Atômica , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microvilosidades/ultraestrutura , Ratos , Linfócitos T Citotóxicos/imunologia
10.
Clin Dev Immunol ; 2012: 160724, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22899945

RESUMO

Lung cancers remain one of the most common and deadly cancers in the world today (12.5% of newly diagnosed cancers) despite current advances in chemo- and radiation therapies. Often, by the time these tumors are diagnosed, they have already metastasized. These tumors demonstrate the classic hallmarks of cancer in that they have advanced defensive strategies allowing them to escape various standard oncological treatments. Immunotherapy is making inroads towards effectively treating other fatal cancers, such as melanoma, glioblastoma multiforme, and castrate-resistant prostate cancers. This paper will cover the escape mechanisms of bronchogenic lung cancer that must be overcome before they can be successfully treated. We also review the history of immunotherapy directed towards lung cancers.


Assuntos
Vacinas Anticâncer , Imunoterapia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Evasão Tumoral , Anticorpos/uso terapêutico , Progressão da Doença , Terapia Genética , Humanos , Neoplasias Pulmonares/patologia , Linfócitos/imunologia , Taxa de Sobrevida
11.
Ultrastruct Pathol ; 36(6): 409-14, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23216239

RESUMO

Gliomas are typically characterized by their infiltrative nature, and the prognosis can be linked to the invasive nature of the tumoral cells. Glioblastoma multiforme are very invasive cancers and this contributes to their lethality. The invadopodia are considered essential for their motility. Human glioma cell invadopodia were examined with transmission electron and immunofluorescent microscopy. By electron microscopy, in situ gliomas (fibrillary astrocytoma, anaplastic astrocytoma, glioblastoma multiforme, pilocytic astrocytoma) show mitochondria with a dense matrix condensed configuration, indicating an active state. The mitochondria were frequently in close contact with an extended smooth endoplasmic reticulum displaying an endoplasmic reticulum subfraction associated with mitochondria. Mitochondria were seen within the filopodia that were penetrating into the extracellular matrix. The activated mitochondria and smooth endoplasmic reticulum were also detected within the invadopdia, which was associated microblood vessels. Fluorescent microscopy confirmed that D54 and U251 glioma cells growing in vitro also contained filopodia with mitochondria. The U251 glioma cells' filopodia that penetrated through 1.2-µm pores of transwell chambers also contained mitocondria, suggesting that the mitochondria are actively involved in the invasion process. Migration and invasion of tumor cells requires an increase in cellular motility and involves formation of lamellipodia, protrusions of the plasma membrane, and individual filopodia [ 1 ]. Gliomas are typically characterized by their infiltrative nature, resulting in a poorly demarcated interface between tumor and normal brain tissue. Their poor prognosis can be linked to the invasive nature of these cells. The motility of these tumor cells is correlated with the presence of invadopodia [ 2 ], and, consequently, more insight is necessary into their structural and molecular aspects. Evidence of robust invadopodia activity in glioblastoma multiforme cells has been reported [ 3 , 4 ]. Because of the significant impact of invadopodia in oncological events such as cell invasion and matrix degradation, more insight into structural and molecular aspects is needed [ 2 ]. The dynamic assembly of invadopodia is still not well understood [ 2 ], and little is known of the alterations in mitochondrial structure and function that contribute to cell mobility [ 5 ]. This paper describes two prominent structural features of the mitochondrial network present within the glioma´s invadopodia that we have recently observed. We believe these two features (activated mitochondria and smooth ER, along with mitochondria contained within the filopodia) might provide researchers with possible targets for future therapies that can control glioma invasiveness.


Assuntos
Glioma/ultraestrutura , Mitocôndrias/ultraestrutura , Pseudópodes/ultraestrutura , Biópsia , Linhagem Celular Tumoral , Movimento Celular , Retículo Endoplasmático/ultraestrutura , Glioma/irrigação sanguínea , Glioma/metabolismo , Humanos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Microvasos/ultraestrutura , Mitocôndrias/metabolismo , Invasividade Neoplásica , Pseudópodes/metabolismo
12.
Am J Transl Res ; 14(6): 4006-4014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836902

RESUMO

In patients with non-alcoholic steatohepatitis (NASH), the onset of fibrosis is a major predictor of cirrhosis and its deadly complications. There is no approved effective pharmacologic therapy for liver fibrosis. Niacin (in pharmacologic concentrations or dose) reverses hepatic steatosis and steatohepatitis. Niacin's efficacy on human hepatic fibrosis is unknown. We investigated the effect of niacin on reversal of preexisting collagen content, in cultured primary human hepatic stellate cells (HSC) obtained from 7 donor livers (processed for transplantation) selected from 5 deceased patients having histologically diagnosed NASH with fibrosis (F1-F3) and 2 non-NASH-fibrosis subjects (Samsara Sciences, Inc., now LifeNet Health). Pharmacologically relevant concentrations of niacin produced a robust and significant dose and time-dependent regression of pre-existing fibrosis by an average of 47.6% and 60.1% (0.25 and 0.5 mM niacin at 48 h incubation) and 53.5% and 65.0% (0.25 and 0.5 mM niacin at 96 h incubation), respectively. In stellate cells from non-NASH-fibrosis subjects, niacin prevented, and regressed fibrosis induced by liver fibrosis stimulators, transforming growth factor-ß (TGF-ß) and hydrogen peroxide. Niacin significantly inhibited oxidative stress induced by stressors, palmitic acid, or hydrogen peroxide by 52% and 50%, respectively. Translationally, these human HSC data, coupled with emerging in vivo animal data and in vitro human hepatocyte data, suggest that niacin (used clinically for dyslipidemia) could be repurposed as an effective drug for the clinical treatment of patients with NASH-fibrosis or liver cirrhosis. This is in addition to its known efficacy for reversing steatohepatitis and steatosis which can also result in liver cirrhosis.

13.
Endocrinology ; 164(2)2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36461668

RESUMO

Estrogen acting through estrogen receptor ß (ERß) has been shown to oppose the stimulation of cardiac myocytes and cardiac fibroblasts that results in cardiac hypertrophy and fibrosis. Previous work has implicated signal transduction from ERß as being important to the function of estrogen in this regard. Here we address whether membrane ERß is sufficient to oppose key mechanisms by which angiotensin II (AngII) stimulates cardiac cell pathology. To do this we first defined essential structural elements within ERß that are necessary for membrane or nuclear localization in cells. We previously determined that cysteine 418 is the site of palmitoylation of ERß that is required and sufficient for cell membrane localization in mice and is the same site in humans. Here we determined in Chinese hamster ovarian (CHO) cells, and mouse and rat myocytes and cardiac fibroblasts, the effect on multiple aspects of signal transduction by expressing wild-type (WT ) or a C418A-mutant ERß. To test the importance of the nuclear receptor, we determined a 4-amino acid deletion in the E domain of ERß that strongly blocked nuclear localization. Using these tools, we expressed WT and mutant ERß constructs into cardiomyocytes and cardiac fibroblasts from ERß-deleted mice. We determined the ability of estrogen to mitigate cell pathology stimulated by AngII and whether the membrane ERß is necessary and sufficient.


Assuntos
Cardiomegalia , Receptor beta de Estrogênio , Miócitos Cardíacos , Animais , Cricetinae , Camundongos , Ratos , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Cardiomegalia/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Estrogênios/farmacologia , Estrogênios/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
14.
J Pharmacol Exp Ther ; 334(3): 693-702, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20498252

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAIDs) such as sulindac and indomethacin are a major cause of gastric erosions and ulcers. Induction of apoptosis by NSAIDs is an important mechanism involved. Understanding how NSAIDs affect genes that regulate apoptosis is useful for designing therapeutic or preventive strategies and for evaluating the efficacy of safer drugs being developed. We investigated whether growth arrest and DNA damage-inducible 45alpha (GADD45alpha), a stress signal response gene involved in regulation of DNA repair and induction of apoptosis, plays a part in NSAID-induced gastric mucosal injury and apoptosis in vivo in mice and in vitro in cultured human AGS and rat RGM-1 gastric epithelial cells. Intraperitoneal administration of sulindac and indomethacin both resulted in up-regulation of GADD45alpha expression and induction of significant injury and apoptosis in gastric mucosa of wild-type mice. GADD45alpha(-/-) mice were markedly more resistant to both sulindac- and indomethacin-induced gastric mucosal injury and apoptosis than wild-type mice. Sulindac sulfide and indomethacin treatments also concentration-dependently increased GADD45alpha expression and apoptosis in AGS and RGM-1 cells. Antisense suppression of GADD45alpha expression significantly reduced sulindac and indomethacin-induced activation of caspase-9 and apoptosis in AGS cells. Pretreatments with exogenous prostaglandins and small interfering RNA suppression of cyclooxygenase (COX)-1 and -2 did not affect up-regulation of GADD45alpha by sulindac sulfide and indomethacin in AGS cells. These findings indicate that GADD45alpha up-regulation is a COX-independent mechanism that is required for induction of severe gastric mucosal apoptosis and injury by NSAIDs, probably via a capase-9-dependent pathway of programmed cell death.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Proteínas de Ciclo Celular/antagonistas & inibidores , Mucosa Gástrica/patologia , Indometacina/toxicidade , Proteínas Nucleares/antagonistas & inibidores , Úlcera Gástrica/patologia , Úlcera Gástrica/prevenção & controle , Sulindaco/toxicidade , Animais , Elementos Antissenso (Genética)/farmacologia , Apoptose/efeitos dos fármacos , Caspase 9/metabolismo , Inibidores de Caspase , Proteínas de Ciclo Celular/biossíntese , Proliferação de Células/efeitos dos fármacos , Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Dano ao DNA , Dinoprostona/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/biossíntese , RNA Interferente Pequeno/farmacologia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Úlcera Gástrica/induzido quimicamente , Regulação para Cima
15.
J Neurooncol ; 97(2): 159-69, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19802719

RESUMO

Adults diagnosed with Glioblastoma multiforme (GBM) are frequently faced with a 7% chance of surviving 2 years compared with pediatric patients with GBM who have a 26% survival rate. Our recent screen of possible glioma-associated antigen precursor protein (TAPP) profiles displayed from different types of pediatric brain tumors showed that pediatric patients contained a subset of the tumor antigens displayed by adult GBM patients. Adult GBM possess at least 27 tumor antigens that can potentially stimulate T cell immune responses, suggesting that these tumors are quite antigenic. In contrast, pediatric brain tumors only expressed nine tumor antigens with mRNA levels that were equivalent to those displayed by adult GBM. These tumor-associated antigens could be used as possible targets of therapeutic immunization for pediatric brain cancer patients. Children have developing immune systems that peak at puberty. An immune response mounted by these pediatric patients might account for their extended life spans, even though the pediatric brain tumors express far fewer total tumor-associated antigens. Here we present a hypothesis that pediatric brain tumor patients might be the best patients to show that immunotherapy can be used to successfully treat established cancers. We speculate that immunotherapy should include a panel of tumor antigens that might prevent the out-growth of more malignant tumor cells and thereby prevent the brain tumor relapse. Thus, pediatric brain tumor patients might provide an opportunity to prove the concept of immunoprevention.


Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Glioblastoma/imunologia , Glioblastoma/terapia , Imunoterapia/métodos , Adulto , Antígenos de Neoplasias/imunologia , Criança , Humanos
16.
J Immunol ; 181(6): 4397-405, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18768899

RESUMO

Thyroid-stimulating hormone receptor (TSHR) plays a central role in regulating thyroid function and is targeted by IgGs in Graves' disease (GD-IgG). Whether TSHR is involved in the pathogenesis of thyroid-associated ophthalmopathy (TAO), the orbital manifestation of GD, remains uncertain. TSHR signaling overlaps with that of insulin-like grow factor 1 receptor (IGF-1R). GD-IgG can activate fibroblasts derived from donors with GD to synthesize T cell chemoattractants and hyaluronan, actions mediated through IGF-1R. In this study, we compare levels of IGF-1R and TSHR on the surfaces of TAO and control orbital fibroblasts and thyrocytes and explore the physical and functional relationship between the two receptors. TSHR levels are 11-fold higher on thyrocytes than on TAO or control fibroblasts. In contrast, IGF-1R levels are 3-fold higher on TAO vs control fibroblasts. In pull-down studies using fibroblasts, thyrocytes, and thyroid tissue, Abs directed specifically against either IGF-1Rbeta or TSHR bring both proteins out of solution. Moreover, IGF-1Rbeta and TSHR colocalize to the perinuclear and cytoplasmic compartments in fibroblasts and thyrocytes by confocal microscopy. Examination of orbital tissue from patients with TAO reveals similar colocalization to cell membranes. Treatment of primary thyrocytes with recombinant human TSH results in rapid ERK phosphorylation which can be blocked by an IGF-1R-blocking mAb. Our findings suggest that IGF-1R might mediate some TSH-provoked signaling. Furthermore, they indicate that TSHR levels on orbital fibroblasts are considerably lower than those on thyrocytes and that this receptor associates with IGF-1R in situ and together may comprise a functional complex in thyroid and orbital tissue.


Assuntos
Autoantígenos/fisiologia , Doença de Graves/imunologia , Doença de Graves/metabolismo , Receptor IGF Tipo 1/fisiologia , Receptores da Tireotropina/fisiologia , Proliferação de Células , Células Cultivadas , Fibroblastos/imunologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Doença de Graves/patologia , Humanos , Fator de Crescimento Insulin-Like I/fisiologia , Órbita/imunologia , Órbita/metabolismo , Órbita/patologia , Receptor IGF Tipo 1/biossíntese , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/isolamento & purificação , Receptores da Tireotropina/isolamento & purificação , Glândula Tireoide/imunologia , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia
17.
Clin Dev Immunol ; 2010: 296453, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21437175

RESUMO

Treatment of brain cancers, especially high grade gliomas (WHO stage III and IV) is slowly making progress, but not as fast as medical researchers and the patients would like. Immunotherapy offers the opportunity to allow the patient's own immune system a chance to help eliminate the cancer. Immunotherapy's strength is that it efficiently treats relatively small tumors in experimental animal models. For some patients, immunotherapy has worked for them while not showing long-term toxicity. In this paper, we will trace the history of immunotherapy for brain cancers. We will also highlight some of the possible directions that this field may be taking in the immediate future for improving this therapeutic option.


Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Glioma/imunologia , Glioma/terapia , Imunoterapia , Animais , Neoplasias Encefálicas/patologia , Terapia Combinada , Modelos Animais de Doenças , Glioma/patologia , Humanos , Imunoterapia/tendências
18.
Endocrinology ; 161(11)2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32976570

RESUMO

Mesenchymal stem cells can differentiate into mature chondrocytes, osteoblasts, and adipocytes. Excessive and dysfunctional visceral adipocytes increase upon menopause and importantly contribute to altered metabolism in postmenopausal women. We previously showed both plasma membrane and nuclear estrogen receptors alpha (ERα) with endogenous estrogen are required to suppress adipogenesis in vivo. Here we determined mechanisms by which these liganded ER pools collaborate to inhibit the peroxisome proliferator-activated gamma (PPARγ) gene and subsequent progenitor differentiation. In 3T3-L1 pre-adipocytes and adipose-derived stem cells (ADSC), membrane ERα signaled through phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) to enhance ERα nuclear localization, importantly at the PPARγ gene promoter. AKT also increased overall abundance and recruitment of co-repressors GATA3, ß-catenin, and TCF4 to the PPARγ promoter. Membrane ERα signaling additionally enhanced wingless-integrated (Wnt)1 and 10b expression. The components of the repressor complex were required for estrogen to inhibit rosiglitazone-induced differentiation of ADSC and 3T3-L1 cells to mature adipocytes. These mechanisms whereby ER cellular pools collaborate to inhibit gene expression limit progenitor differentiation to mature adipocytes.


Assuntos
Adipogenia/genética , Receptor alfa de Estrogênio/fisiologia , Células 3T3-L1 , Adipócitos/fisiologia , Animais , Diferenciação Celular/genética , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Regulação para Baixo/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Camundongos , Camundongos Transgênicos , Transdução de Sinais/genética
19.
Apoptosis ; 14(11): 1341-51, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19757064

RESUMO

Growth arrest and DNA damage inducible 45 alpha (GADD45alpha) is a central player in mediating apoptosis induced by a variety of stress stimuli and genotoxic agents. Regular usage of nonselective nonsteroidal anti-inflammatory drugs (NSAIDs) such as indomethacin and sulindac is associated with reduced risk for various cancers, including colon cancer. The role of GADD45alpha in NSAID-induced colon cancer cell cytotoxicity is unknown. In this study, we report that indomethacin and sulindac sulfide treatments up-regulate GADD45alpha mRNA expression and protein levels in colon cancer HT-29, RKO and Caco-2 cells. This up-regulation of GADD45alpha is accompanied by necrotic cell death and apoptosis. Anti-sense suppression of GADD45alpha expression inhibited indomethacin and sulindac sulfide-induced necrotic cell death and apoptosis. These findings confirm a role for GADD45alpha in NSAID-induced cytotoxicity, a mechanism for the anti-neoplastic effect of NSAIDs in colon tumorigenesis and cancer growth.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Neoplasias do Colo/patologia , Indometacina/farmacologia , Necrose/induzido quimicamente , Proteínas Nucleares/genética , Sulindaco/análogos & derivados , Células CACO-2 , Proteínas de Ciclo Celular/biossíntese , Neoplasias do Colo/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Proteínas Nucleares/biossíntese , Oligonucleotídeos Antissenso/farmacologia , RNA Mensageiro/metabolismo , Sulindaco/farmacologia , Regulação para Cima/efeitos dos fármacos
20.
Cell Immunol ; 259(2): 117-27, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19615673

RESUMO

Mouse Hepa1-6 hepatocellular carcinoma (HCC) cells were transduced with the membrane form of macrophage colony stimulating factor (mM-CSF). When mM-CSF transduced Hepa1-6 cells were injected subcutaneously into mice, these cells did not form tumors. The spleens of these immunized mice contained cytotoxic CD8+ T lymphocytes (CTL) that killed the unmodified Hepa1-6 cells. We show that the alternative form of macrophage colony stimulating factor (altM-CSF) induced CTL-mediated immunity against Hepa1-6 cells. AltM-CSF is restricted to the H-2D(b) allele. CTLs killed RMA-S cells loaded with exogenous altM-CSF peptide. Vaccination of mice with dendritic cells pulsed with the altM-CSF peptide stimulated anti-Hepa1-6 CTLs. Hyper-immunization of mice with mM-CSF Hepa1-6 cells showed inflammation of the liver and kidneys. Although altM-CSF was expressed within liver and kidney cells, its intensity was lower than Hepa1-6 cells. AltM-CSF was detected within the human HepG2 cell line. These studies suggest that altM-CSF may be a tumor antigen for HCC.


Assuntos
Neoplasias Hepáticas Experimentais/imunologia , Fator Estimulador de Colônias de Macrófagos/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Testes Imunológicos de Citotoxicidade , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Imunização , Imuno-Histoquímica , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/prevenção & controle , Fator Estimulador de Colônias de Macrófagos/administração & dosagem , Fator Estimulador de Colônias de Macrófagos/biossíntese , Fator Estimulador de Colônias de Macrófagos/genética , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Isoformas de Proteínas , RNA/química , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa