Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 13(3): 884-8, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23398658

RESUMO

Here we demonstrate electric-field induced magnetic anisotropy in a multiferroic composite containing nickel nanocrystals strain coupled to a piezoelectric substrate. This system can be switched between a superparamagnetic state and a single-domain ferromagnetic state at room temperature. The nanocrystals show a shift in the blocking temperature of 40 K upon electric poling. We believe this is the first example of a system where an electric field can be used to switch on and off a permanent magnetic moment.


Assuntos
Magnetismo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanopartículas
2.
ACS Nano ; 9(5): 4814-26, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25906195

RESUMO

In this work, we experimentally demonstrate deterministic electrically driven, strain-mediated domain wall (DW) rotation in ferromagnetic Ni rings fabricated on piezoelectric [Pb(Mg1/3Nb2/3)O3]0.66-[PbTiO3]0.34 (PMN-PT) substrates. While simultaneously imaging the Ni rings with X-ray magnetic circular dichroism photoemission electron microscopy, an electric field is applied across the PMN-PT substrate that induces strain in the ring structures, driving DW rotation around the ring toward the dominant PMN-PT strain axis by the inverse magnetostriction effect. The DW rotation we observe is analytically predicted using a fully coupled micromagnetic/elastodynamic multiphysics simulation, which verifies that the experimental behavior is caused by the electrically generated strain in this multiferroic system. Finally, this DW rotation is used to capture and manipulate micrometer-scale magnetic beads in a fluidic environment to demonstrate a proof-of-concept energy-efficient pathway for multiferroic-based lab-on-a-chip applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa