RESUMO
Although the RNA helicase Upf1 has hitherto been examined mostly in relation to its cytoplasmic role in nonsense mediated mRNA decay (NMD), here we report high-throughput ChIP data indicating genome-wide association of Upf1 with active genes in Schizosaccharomyces pombe. This association is RNase sensitive, correlates with Pol II transcription and mRNA expression levels. Changes in Pol II occupancy were detected in a Upf1 deficient (upf1Δ) strain, prevalently at genes showing a high Upf1 relative to Pol II association in wild-type. Additionally, an increased Ser2 Pol II signal was detected at all highly transcribed genes examined by ChIP-qPCR. Furthermore, upf1Δ cells are hypersensitive to the transcription elongation inhibitor 6-azauracil. A significant proportion of the genes associated with Upf1 in wild-type conditions are also mis-regulated in upf1Δ. These data envisage that by operating on the nascent transcript, Upf1 might influence Pol II phosphorylation and transcription.
Assuntos
RNA Helicases/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Fosforilação , RNA Helicases/genética , RNA Polimerase II/genética , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética , Ativação TranscricionalRESUMO
Hexabromocyclododecane (HBCD), was a widely utilized brominated flame retardant, commonly found in a wide range of household products. The pervasiveness of HBCD has identified the presence of this chemical in foods and in human tissues. Therefore, HBCD has been identified as a chemical of concern. The aim was to investigate the degree of cytotoxicity of HBCD in a range of cell lines derived from different tissues, (including hematopoietic, nerve, liver, and kidney-derived cells) with a view of determining any differential cell type effects. In addition, this study also investigated the mechanism(s) by which HBCD could cause cell death. The results showed that HCBD was considerably more toxic to leukocyte-derived (RBL2H3) and neuronal-derived (SHSY-5Y) cells with LC50 values of 1.5 and 6.1 µM, respectively, compared to cells derived from liver (HepG2) and kidney (Cos-7), which had LC50 values of 28.5 and 17.5 µM, respectively. A detailed investigation of the mechanism(s) of cell death showed that HBCD caused, at least in part, Ca2+ -dependent cell death, caspase-activated apoptosis, and autophagy, but there was little evidence for either necrosis or necroptosis occurring. Furthermore, it was shown that HBCD can also induce the ER stress response which is a known trigger of both apoptosis and autophagy and therefore this could be one of the crucial events by which cell death is initiated. As each of these cell death mechanisms was investigated in at least two different cell lines and no differences were identified, it is likely that the mode of action is not cell-type specific.
Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Humanos , Hidrocarbonetos Bromados/toxicidade , Apoptose , Fígado , Autofagia , Retardadores de Chama/toxicidadeRESUMO
Reactive oxygen species formation and resultant oxidative damage to DNA are ubiquitous events in cells, the homeostasis of which can be dysregulated in a range of pathological conditions. Base excision repair (BER) is the primary repair mechanism for oxidative genomic DNA damage. One prevalent oxidised base modification, 8-oxoguanine (8-oxoG), is recognised by 8-oxoguanine glycosylase-1 (OGG1) initiating removal and repair via BER. Surprisingly, Ogg1 null mouse embryonic fibroblasts (mOgg1-/- MEFs) do not accumulate 8-oxoG in the genome to the extent expected. This suggests that there are backup repair mechanisms capable of repairing 8-oxoG in the absence of OGG1. In the current study, we identified components of NER (Ercc1, Ercc4, Ercc5), BER (Lig1, Tdg, Nthl1, Mpg, Mgmt, NEIL3), MMR (Mlh1, Msh2, Msh6) and DSB (Brip1, Rad51d, Prkdc) pathways that are transcriptionally elevated in mOgg1-/- MEFs. Interestingly, all three nucleotide excision repair genes identified: Ercc1 (2.5 ± 0.2-fold), Ercc4 (1.5 ± 0.1-fold) and Ercc5 (1.7 ± 0.2-fold) have incision activity. There was also a significant functional increase in NER activity (42.0 ± 7.9%) compared to WT MEFs. We also observed upregulation of both Neil3 mRNA (37.9 ± 1.6-fold) and protein in mOgg1-/- MEFs. This was associated with a 3.4 ± 0.4-fold increase in NEIL3 substrate sites in genomic DNA of cells treated with BSO, consistent with the ability of NEIL3 to remove 8-oxoG oxidation products from genomic DNA. In conclusion, we suggest that in Ogg1-null cells, upregulation of multiple DNA repair proteins including incision components of the NER pathway and Neil3 are important compensatory responses to prevent the accumulation of genomic 8-oxoG.
Assuntos
DNA Glicosilases/metabolismo , Reparo do DNA , Endodesoxirribonucleases/metabolismo , Fibroblastos/metabolismo , Estresse Oxidativo , Animais , Células Cultivadas , Ensaio Cometa/métodos , Dano ao DNA , DNA Glicosilases/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/metabolismo , Endodesoxirribonucleases/genética , Endonucleases/metabolismo , Regulação da Expressão Gênica , Guanina/análogos & derivados , Guanina/metabolismo , Linfócitos Nulos/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismoRESUMO
The untranslated regions (UTRs) of viral genomes contain a variety of conserved yet dynamic structures crucial for viral replication, providing drug targets for the development of broad spectrum anti-virals. We combine in vitro RNA analysis with molecular dynamics simulations to build the first 3D models of the structure and dynamics of key regions of the 5' UTR of the SARS-CoV-2 genome. Furthermore, we determine the binding of metallo-supramolecular helicates (cylinders) to this RNA structure. These nano-size agents are uniquely able to thread through RNA junctions and we identify their binding to a 3-base bulge and the central cross 4-way junction located in stem loop 5. Finally, we show these RNA-binding cylinders suppress SARS-CoV-2 replication, highlighting their potential as novel anti-viral agents.
Assuntos
Regiões 5' não Traduzidas , Antivirais/farmacologia , Substâncias Macromoleculares/farmacologia , RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/metabolismo , Chlorocebus aethiops , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , Genoma Viral/efeitos dos fármacos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Metais Pesados/química , Simulação de Dinâmica Molecular , RNA/genética , SARS-CoV-2/química , Células VeroRESUMO
A class of rotaxane is created, not by encapsulating a conventional linear thread, but rather by wrapping a large cucurbit[10]uril macrocycle about a three-dimensional, cylindrical, nanosized, self-assembled supramolecular helicate as the axle. The resulting pseudo-rotaxane is readily converted into a proper interlocked rotaxane by adding branch points to the helicate strands that form the surface of the cylinder (like branches and roots on a tree trunk). The supramolecular cylinder that forms the axle is itself a member of a unique and remarkable class of helicate metallo-drugs that bind Y-shaped DNA junction structures and induce cell death. While pseudo-rotaxanation does not modify the DNA-binding properties, proper, mechanically-interlocked rotaxanation transforms the DNA-binding and biological activity of the cylinder. The ability of the cylinder to de-thread from the rotaxane (and thus to bind DNA junction structures) is controlled by the extent of branching: fully-branched cylinders are locked inside the cucurbit[10]uril macrocycle, while cylinders with incomplete branch points can de-thread from the rotaxane in response to competitor guests. The number of branch points can thus afford kinetic control over the drug de-threading and release.
Assuntos
DNA/química , Metais/química , Nanoestruturas/química , Rotaxanos/química , Hidrocarbonetos Aromáticos com Pontes/química , Complexos de Coordenação/química , Imidazóis/química , LigantesRESUMO
Four new bis-substituted ferrocene derivatives containing either a hydroxyalkyl or methoxyalkyl group and either a thyminyl or methylthyminyl group have been synthesised and characterised by a range of spectroscopic and analytical techniques. They were included in a structure-activity-relationship (SAR) study probing anticancer activities in osteosarcoma (bone cancer) cell lines and were compared with a known lead compound, 1-(S,Rp ), a nucleoside analogue that is highly toxic to cancer cells. Biological studies using the MTT assay revealed that a regioisomer of ferronucleoside 1-(S,Rp ), which only differs from the lead compound in being substituted on two cyclopentadienyl rings rather than one, was over 20â times less cytotoxic. On the other hand, methylated derivatives of 1-(S,Rp ) showed comparable cytotoxicities to the lead compound. Overall these studies indicate that a mechanism of action for 1-(S,Rp ) cannot proceed through alcohol phosphorylation and that its geometry and size, rather than any particular functional group, are crucial factors in explaining its high anticancer activity.
Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Compostos Ferrosos/farmacologia , Metalocenos/farmacologia , Nucleosídeos/farmacologia , Compostos Organometálicos/farmacologia , Osteossarcoma/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Ósseas/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Ferrosos/química , Humanos , Metalocenos/química , Metilação , Modelos Moleculares , Estrutura Molecular , Nucleosídeos/química , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Osteossarcoma/patologia , Relação Estrutura-Atividade , Células Tumorais CultivadasRESUMO
The development of long-lived luminescent nanoparticles for lifetime imaging is of wide interest as luminescence lifetime is environmentally sensitive detection independent of probe concentration. We report novel iridium-coated gold nanoparticles as probes for multiphoton lifetime imaging with characteristic long luminescent lifetimes based on iridium luminescence in the range of hundreds of nanoseconds and a short signal on the scale of picoseconds based on gold allowing multichannel detection. The tailor-made IrC6 complex forms stable, water-soluble gold nanoparticles (AuNPs) of 13, 25, and 100 nm, bearing 1400, 3200, and 22â¯000 IrC6 complexes per AuNP, respectively. The sensitivity of the iridium signal on the environment of the cell is evidenced with an observed variation of lifetimes. Clusters of iridium nanoparticles show lifetimes from 450 to 590 ns while lifetimes of 660 and 740 ns are an average of different points in the cytoplasm and nucleus. Independent luminescence lifetime studies of the nanoparticles in different media and under aggregation conditions postulate that the unusual long lifetimes observed can be attributed to interaction with proteins rather than nanoparticle aggregation. Total internal reflection fluorescence microscopy (TIRF), confocal microscopy studies and 3D luminescence lifetime stacks confirm the presence of bright, nonaggregated nanoparticles inside the cell. Inductively coupled plasma mass spectrometry (ICPMS) analysis further supports the presence of the nanoparticles in cells. The iridium-coated nanoparticles provide new nanoprobes for lifetime detection with dual channel monitoring. The combination of the sensitivity of the iridium signal to the cell environment together with the nanoscaffold to guide delivery offer opportunities for iridium nanoparticles for targeting and tracking in in vivo models.
Assuntos
Irídio/química , Nanopartículas Metálicas/química , Complexos de Coordenação , Ouro/química , Células HeLa , Humanos , Luminescência , Imagem Óptica , TensoativosRESUMO
The tungsten alloy of 91% tungsten, 6% nickel and 3% cobalt (WNC 91-6-3) induces rhabdomyosarcoma when implanted into a rat thigh muscle. To investigate whether this effect is species-specific human HSkMc primary muscle cells were exposed to WNC 91-6-3 particles and responses were compared with those from a rat skeletal muscle cell line (L6-C11). Toxicity was assessed by the adenylate kinase assay and microscopy, DNA damage by the Comet assay. Caspase 3 enzyme activity was measured and oligonucleotide microarrays were used for transcriptional profiling. WNC 91-6-3 particles caused toxicity in cells adjacent to the particles and also increased DNA strand breaks. Inhibition of caspase 3 by WNC 91-6-3 occurred in rat but not in human cells. In both rat and human cells, the transcriptional response to WNC 91-6-3 showed repression of transcripts encoding muscle-specific proteins with induction of glycolysis, hypoxia, stress responses and transcripts associated with DNA damage and cell death. In human cells, genes encoding metallothioneins were also induced, together with genes related to angiogenesis, dysregulation of apoptosis and proliferation consistent with pre-neoplastic changes. An alloy containing iron, WNF 97-2-1, which is non-carcinogenic in vivo in rats, did not show these transcriptional changes in vitro in either species while the corresponding cobalt-containing alloy, WNC 97-2-1 elicited similar responses to WNC 91-6-3. Tungsten alloys containing both nickel and cobalt therefore have the potential to be carcinogenic in man and in vitro assays coupled with transcriptomics can be used to identify alloys, which may lead to tumour formation, by dysregulation of biochemical processes.
Assuntos
Ligas/toxicidade , Transformação Celular Neoplásica/induzido quimicamente , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Musculares/metabolismo , Compostos de Tungstênio/toxicidade , Adulto , Animais , Caspase 3/metabolismo , Inibidores de Caspase/toxicidade , Linhagem Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Ensaio Cometa , Quebras de DNA , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Medição de Risco , Especificidade da Espécie , Transcrição GênicaRESUMO
Osmium(II) complexes have attractive properties for potential theranostic agents given their anticancer activitiy, their redox potentials favourable for biological transformations within cancer cells and their luminescence in the near infrared (NIR) region. To achieve localised detection and delivery, gold nanoparticles (AuNP) provide an attractive scaffold to attach multiple luminescent agents on a single particle and provide a multimodal platform for detection and loaclaised delivery. We have developed 13 nm and 25 nm AuNP decorated with an osmium complex based on 1,10-phenantholine and surface active bipyridine ligands, OsPhenSS for live cell imaging and singlet oxygen generation, notated as OsPhenSS·AuNP13 and OsPhenSS·AuNP25. The AuNP designs not only allow versatile modalities for localisation of the probe but also water solubility for the osmium metal complex. The osmium decorated nanoparticles OsPhenSS·AuNP13 and OsPhenSS·AuNP25 display characteristic NIR luminescence from the osmium(II) 3MLCT at 785 nm in aqueous solutions with visible excitation. Upon incubation of the nanoparticles in lung cancer and breast carcinoma the luminescence signature of osmium and the gold reflectance reveal localisation in the cytoplasmic and perinuclear compartments. Excitation of the nanoparticles at 552 nm in the presence of a ROS indicator revealed a marked increase in the green fluorescence from the indicator, consistent with photo-induced ROS generation. The detection of singlet oxygen by time-resolved luminescence studies of the osmium and the nanoparticle probes further demonstrates the dual activity of the osmium-based nanoprobes for imaging and therapy. The introduction of gold nanoparticles for carrying osmium imaging probes allows a novel versatile strategy combining detection and localised therapies at the nanoscale.
Assuntos
Ouro , Nanopartículas Metálicas , Osmio , Oxigênio Singlete , Ouro/química , Nanopartículas Metálicas/química , Osmio/química , Humanos , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química , Linhagem Celular Tumoral , Células A549 , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismoRESUMO
Estuarine and coastal habitats are known to be polluted by a range of chemical contaminants from both industrial and domestic sources. Blue mussels (Mytilus spp.), which inhabit these areas, are widely used as bio-indicators in eco-toxicological studies, because of their sedentary nature and their ability to bio-accumulate contaminants. The analysis of DNA damage in mussel haemocytes is a valuable tool for biomonitoring but sampling issues related to storage, handling and transportation have often limited its application in large-scale monitoring programmes. This study uses a trial and error method to evaluate and validate a suitable protocol for cryopreservation of mussel haemocytes, thereby allowing material collected in the field to be analysed later under controlled laboratory conditions. Three different cell-culture media, i.e. Leibovitz-15, Hank's balanced salt solution and mussel physiological saline, along with four different cryoprotectants, i.e. dimethyl sulphoxide (10% and 20%), 1,2-propanediol (10%), ethylene glycol (10%) and glycerol (10%) were tested to assess their suitability for cryopreservation of mussel haemocytes for analysis in the comet assay. Experimental studies where mussel haemocytes were also exposed to UV radiation or benzo(a)pyrene were conducted in order to mimic environmental stresses and to verify the effectiveness of newly defined cryopreservation protocols. The comet assay was used to demonstrate that mussel haemocytes could be preserved at cryogenic temperatures for a month without altering levels of DNA damage, which could possibly be used for lab or field studies where time constraints or facilities do not allow instant analysis.
Assuntos
Ensaio Cometa/métodos , Criopreservação , Dano ao DNA , Hemócitos , Mytilus/genética , Animais , Meios de Cultura , Hemócitos/efeitos dos fármacos , Hemócitos/efeitos da radiaçãoRESUMO
The inefficacy of antibiotics against Gram-negative bacteria is a major challenge for treatment of many clinically important bacterial infections. The complex structure of the double cell membrane of Gram-negative bacteria makes it inaccessible to many key antibiotics such as vancomycin and also presents a major challenge for drug development. In this study we design of a novel hybrid silica nanoparticle system bearing membrane targeting groups with the antibiotic encapsulated together with a ruthenium luminescent tracking agent, for optical detection of the nanoparticle delivery in the bacterial cell. The hybrid system shows delivery of vancomycin and efficacy against a library of Gram negative bacterial species. Evidence of penetration of nanoparticles in bacteria cells is achieved via luminescence of the ruthenium signal. Our studies show that nanoparticles modified with aminopolycarboxylate chelating groups are an effective delivery system in bacterial growth inhibition in species whereas the molecular antibiotic is ineffective. This design provides a new platform for delivery of antibiotics that cannot alone penetrate the bacterial membrane.
RESUMO
Gene-environment interactions influence an individual's risk of disease development. A common human 8-oxoguanine DNA glycosylase 1 (OGG1) variant, Cys326-hOGG1, has been associated with increased cancer risk. Evidence suggests that this is due to reduced repair ability, particularly under oxidising conditions but the underlying mechanism is poorly understood. Oxidising conditions may arise due to internal cellular processes, such as inflammation or external chemical or radiation exposure. To investigate wild-type and variant OGG1 regulation and activity under oxidising conditions, we generated mOgg1 (-/-) null mouse embryonic fibroblasts cells stably expressing Ser326- and Cys326-hOGG1 and measured activity, gene expression, protein expression and localisation following treatment with the glutathione-depleting compound L-buthionine-S-sulfoximine (BSO). Assessment of OGG1 activity using a 7,8-dihydro-8-oxodeoxyguanine (8-oxo dG) containing molecular beacon demonstrated that the activity of both Ser326- and Cys326-hOGG1 was increased following oxidative treatment but with different kinetics. Peak activity of Ser326-hOGG1 occurred 12 h prior to that of Cys326-hOGG1. In both variants, the increased activity was not associated with any gene expression or protein increase or change in protein localisation. These findings suggest that up-regulation of OGG1 activity in response to BSO-induced oxidative stress is via post-transcriptional regulation and provide further evidence for impaired Cys326-hOGG1 repair ability under conditions of oxidative stress. This may have important implications for increased mutation frequency resulting from increased oxidative stress in individuals homozygous for the Cys326 hOGG1 allele.
Assuntos
Dano ao DNA/genética , DNA Glicosilases/metabolismo , DNA Glicosilases/fisiologia , Reparo do DNA/genética , Estresse Oxidativo/genética , Polimorfismo Genético/genética , Animais , Antimetabólitos/farmacologia , Western Blotting , Butionina Sulfoximina/farmacologia , Células Cultivadas , Cisteína/química , Cisteína/genética , DNA Glicosilases/genética , Desoxiadenosinas/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Citometria de Fluxo , Interação Gene-Ambiente , Glutationa/metabolismo , Humanos , Camundongos , Camundongos Knockout , Taxa de Mutação , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina/química , Serina/genética , Regulação para CimaRESUMO
Doxorubicin (DOX) is a potent anticancer drug, which can have unwanted side-effects such as cardiac and kidney toxicity. A detailed investigation was undertaken of the acute cytotoxic mechanisms of DOX on kidney cells, using Cos-7 cells as kidney cell model. Cos-7 cells were exposed to DOX for a period of 24 h over a range of concentrations, and the LC50 was determined to be 7 µM. Further investigations showed that cell death was mainly via apoptosis involving Ca2+ and caspase 9, in addition to autophagy. Regucalcin (RGN), a cytoprotective protein found mainly in liver and kidney tissues, was overexpressed in Cos-7 cells and shown to protect against DOX-induced cell death. Subcellular localization studies in Cos-7 cells showed RGN to be strongly correlated with the nucleus. However, upon treatment with DOX for 4 h, which induced membrane blebbing in some cells, the localization appeared to be correlated more with the mitochondria in these cells. It is yet to be determined whether this translocation is part of the cytoprotective mechanism or a consequence of chemically induced cell stress.
Assuntos
Antibióticos Antineoplásicos/toxicidade , Proteínas de Ligação ao Cálcio/metabolismo , Doxorrubicina/toxicidade , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Nefropatias/prevenção & controle , Rim/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Transporte Ativo do Núcleo Celular , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Células COS , Proteínas de Ligação ao Cálcio/genética , Chlorocebus aethiops , Peptídeos e Proteínas de Sinalização Intracelular/genética , Rim/metabolismo , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Transdução de Sinais , Fatores de TempoRESUMO
Pancreatic ductal adenocarcinoma (PDAC) is a disease that remains refractory to existing treatments including the nucleoside analogue gemcitabine. In the current study we demonstrate that an organometallic nucleoside analogue, the ferronucleoside 1-(S,Rp), is cytotoxic in a panel of PDAC cell lines including gemcitabine-resistant MIAPaCa2, with IC50 values comparable to cisplatin. Biochemical studies show that the mechanism of action is inhibition of DNA replication, S-phase cell cycle arrest and stalling of DNA-replication forks, which were directly observed at single molecule resolution by DNA-fibre fluorography. In agreement with this, transcriptional changes following treatment with 1-(S,Rp) include activation of three of the four genes (HUS1, RAD1, RAD17) of the 9-1-1 check point complex clamp and two of the three genes (MRE11, NBN) that form the MRN complex as well as activation of multiple downstream targets. Furthermore, there was evidence of phosphorylation of checkpoint kinases 1 and 2 as well as RPA1 and gamma H2AX, all of which are considered biochemical markers of replication stress. Studies in p53-deficient cell lines showed activation of CDKN1A (p21) and GADD45A by 1-(S,Rp) was at least partially independent of p53. In conclusion, because of its potency and activity in gemcitabine-resistant cells, 1-(S,Rp) is a promising candidate molecule for development of new treatments for PDAC.
Assuntos
Replicação do DNA , Nucleosídeos , Neoplasias Pancreáticas , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Humanos , Metalocenos , Nucleosídeos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Fase S , Proteína Supressora de Tumor p53/metabolismo , Neoplasias PancreáticasRESUMO
Oxidative DNA damage caused by intracellular reactive oxygen species (ROS) is widely considered to be important in the pathology of a range of human diseases including cancer as well as in the aging process. A frequently occurring mutagenic base lesion produced by ROS is 8-oxo deoxyguanine (8-oxo dG) and the major enzyme for repair of 8-oxo dG is 8-oxoguanine-DNA glycosylase 1 (OGG1). There is now substantial evidence from bulk biochemical studies that a common human polymorphic variant of OGG1 (Ser326Cys) is repair deficient, and this has been linked to individual risk of pathologies related to oxidative stress. In the current study, we have used the technique of multiphoton microscopy to induce highly localized oxidative DNA damage in discrete regions of the nucleus of live cells. Cells transfected with GFP-tagged OGG1 proteins demonstrated rapid (<2 min) accumulation of OGG1 at sites of laser-induced damage as indicated by accumulation of GFP-fluorescence. This was followed by repair as evidenced by loss of the localized fluorescence over time. Quantification of the rate of repair confirmed that the Cys326 variant of OGG1 is repair deficient and that the initial repair rate of damage by Cys326 OGG1 was 3 to 4 fold slower than that observed for Ser326 OGG1. These values are in good agreement with kinetic data comparing the Ser326 and Cys326 proteins obtained by biochemical studies.
Assuntos
Núcleo Celular/genética , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA/genética , Estresse Oxidativo/genética , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Dano ao DNA/genética , Fibroblastos , Cinética , Camundongos , Camundongos Knockout , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Mutagênese/genética , Polimorfismo Genético/genética , Espécies Reativas de Oxigênio/metabolismoRESUMO
HepG2 cells continue to be a valuable tool in early drug discovery and pharmaceutical development. In the current study we develop a 3D in vitro liver model, using HepG2/C3A cells that is predictive of human genotoxic exposure. HepG2/C3A cells cultured for 7-days in agarose-coated microplates formed spheroids which were uniform in shape and had well defined outer perimeters and no evidence of a hypoxic core. Quantitative real-time-PCR analysis showed statistically significant transcriptional upregulation of xenobiotic metabolising genes (CYP1A1, CYP1A2, UG1A1, UGT1A3, UGT1A6, EPHX, NAT2) and genes linked to liver function (ALB, CAR) in 3D cultures. In response to three model pro-genotoxicants: benzo[a]pyrene, amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-aminoanthracene (2-AA), we observed further transcriptional upregulation of xenobiotic metabolising genes (CYP1A1, CYP1A2, NAT1/2, SULT1A2, UGT1A1, UGT1A3) compared to untreated spheroids. Consistent with this, spheroids were more sensitive than 2D monolayers to compound induced single- and double- stranded DNA-damage as assessed by the comet assay and γH2AX phosphorylation respectively. In contrast, levels of DNA-damage induced by the direct acting mutagen 4-nitroquinoline N-oxide (4NQO) was the same in spheroids and monolayers. In support of the enhanced genotoxic response in spheroids we also observed transcriptional upregulation of genes relating to DNA-damage and cellular stress response (e.g. GADD45A and CDKN1A) in spheroids. In conclusion, HepG2/C3A 3D spheroids are a sensitive model for in vitro genotoxicity assessment with potential applications in early stage drug development.
Assuntos
4-Nitroquinolina-1-Óxido/toxicidade , Alternativas aos Testes com Animais , Antracenos/toxicidade , Benzo(a)pireno/toxicidade , Ensaio Cometa , Hepatócitos/efeitos dos fármacos , Imidazóis/toxicidade , Fígado/efeitos dos fármacos , 4-Nitroquinolina-1-Óxido/metabolismo , Ativação Metabólica , Antracenos/metabolismo , Benzo(a)pireno/metabolismo , Dano ao DNA , Regulação Enzimológica da Expressão Gênica , Células Hep G2 , Hepatócitos/enzimologia , Hepatócitos/patologia , Histonas/metabolismo , Humanos , Imidazóis/metabolismo , Fígado/enzimologia , Fígado/patologia , Fosforilação , Esferoides Celulares , Fatores de TempoRESUMO
Optical microscopy techniques are ideal for live cell imaging for real-time nanoparticle tracking of nanoparticle localization. However, the quantification of nanoparticle uptake is usually evaluated by analytical methods that require cell isolation. Luminescent labeling of gold nanoparticles with transition metal probes yields particles with attractive photophysical properties, enabling cellular tracking using confocal and time-resolved microscopies. In the current study, gold nanoparticles coated with a red-luminescent ruthenium transition metal complex are used to quantify and track particle uptake and localization. Analysis of the red-luminescence signal from particles is used as a metric of cellular uptake, which correlates to total cellular gold and ruthenium content, independently measured and correlated by inductively coupled plasma mass spectrometry. Tracking of the luminescence signal provides evidence of direct diffusion of the nanoparticles across the cytoplasmic membrane with particles observed in the cytoplasm and mitochondria as nonclustered "free" nanoparticles. Electron microscopy and inhibition studies identified macropinocytosis of clusters of particles into endosomes as the major mechanism of uptake. Nanoparticles were tracked inside GFP-tagged cells by following the red-luminescence signal of the ruthenium complex. Tracking of the particles demonstrates their initial location in early endosomes and, later, in lysosomes and autophagosomes. Colocalization was quantified by calculating the Pearson's correlation coefficient between red and green luminescence signals and confirmed by electron microscopy. Accumulation of particles in autophagosomes correlated with biochemical evidence of active autophagy, but there was no evidence of detachment of the luminescent label or breakup of the gold core. Instead, accumulation of particles in autophagosomes caused organelle swelling, breakdown of the surrounding membranes, and endosomal release of the nanoparticles into the cytoplasm. The phenomenon of endosomal release has important consequences for the toxicity, cellular targeting, and therapeutic future applications of gold nanoparticles.
RESUMO
Cytoglobin is important in the progression of oral squamous cell carcinoma but the molecular and cellular basis remain to be elucidated. In the current study, we develop a new cell model to study the function of cytoglobin in oral squamous carcinoma and response to cisplatin. Transcriptomic profiling showed cytoglobin mediated changes in expression of genes related to stress response, redox metabolism, mitochondrial function, cell adhesion, and fatty acid metabolism. Cellular and biochemical studies show that cytoglobin expression results in changes to phenotype associated with cancer progression including: increased cellular proliferation, motility and cell cycle progression. Cytoglobin also protects cells from cisplatin-induced apoptosis and oxidative stress with levels of the antioxidant glutathione increased and total and mitochondrial reactive oxygen species levels reduced. The mechanism of cisplatin resistance involved inhibition of caspase 9 activation and cytoglobin protected mitochondria from oxidative stress-induced fission. To understand the mechanism behind these phenotypic changes we employed lipidomic analysis and demonstrate that levels of the redox sensitive and apoptosis regulating cardiolipin are significantly up-regulated in cells expressing cytoglobin. In conclusion, our data shows that cytoglobin expression results in important phenotypic changes that could be exploited by cancer cells in vivo to facilitate disease progression.
Assuntos
Apoptose/efeitos dos fármacos , Cardiolipinas/metabolismo , Citoglobina/farmacologia , Mitocôndrias/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Antioxidantes/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Adesão Celular/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Glutationa/metabolismo , Humanos , Mitocôndrias/metabolismo , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacosRESUMO
The untranslated regions (UTRs) of viral genomes contain a variety of conserved yet dynamic structures crucial for viral replication, providing drug targets for the development of broad spectrum anti-virals. We combine in vitro RNA analysis with molecular dynamics simulations to build the first 3D models of the structure and dynamics of key regions of the 5' UTR of the SARS-CoV-2 genome. Furthermore, we determine the binding of metallo-supramolecular helicates (cylinders) to this RNA structure. These nano-size agents are uniquely able to thread through RNA junctions and we identify their binding to a 3-base bulge and the central cross 4-way junction located in stem loop 5. Finally, we show these RNA-binding cylinders suppress SARS-CoV-2 replication, highlighting their potential as novel anti-viral agents.
RESUMO
Infections are common complications in joint replacement surgeries. Eradicated infections can lead to implant failure. In this paper, analogues of the peptide KR-12 derived from the human cathelicidin LL-37 were designed, synthesised, and characterised. The designed antimicrobial peptides (AMPs) were attached to the surface of a titanium alloy, Ti6Al4V, by conjugation to a polydopamine linking substrate. The topography of the polydopamine coating was evaluated by electron microscopy and coating thickness measurements were performed with ellipsometry and Atomic Force Microscopy (AFM). The subsequently attached peptide stability was investigated with release profile studies in simulated body fluid, using both fluorescence imaging and High-Performance Liquid Chromatography (HPLC). Finally, the hydrophobicity of the coating was characterised by water contact angle measurements. The designed AMPs were shown to provide long-term bonding to the polydopamine-coated Ti6Al4V surfaces.