Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecology ; 98(11): 2860-2872, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28771689

RESUMO

Allochthonous resource movement across ecosystem boundaries creates episodic linkages between ecosystems. The sensitivity of the community to external resources of varying duration can alter the baseline upon which future pulses of allochthony can act. We explored the terrestrial ecosystem response to pulsed inputs of lake-derived resources with a manipulative experiment in a subarctic heathland where we assessed plant community and nutrient availability responses to additions of midge carcasses (Diptera: Chironomidae). Insect carcasses were added as either a one-time pulse or a 4-yr press to simulate differing durations of allochthony, which is common in the area. We found that midge pulses significantly elevated soil inorganic [N] in the first year (7× over background levels) but were significantly diminished (1.5×) by the second year after the initial pulse. The press treatment continued to elevate total soil inorganic [N] to 13× over background levels by the fourth year of midge additions, but then declined to 3.6× background in year 5 when experimental midge additions had ceased. In contrast to the soil inorganic N response, plant biomass was similar in pulse-addition and control plots over the course of the experiment. However, by the second year of the study plant biomass in press-addition plots were significantly higher than controls (>50%), and continued to increase over the 4 yr of the press treatment. Midge addition stimulated dominance of graminoids and thatch litter in plots that had previously been primarily heathland vegetation, a response that persisted 4 yr post-midge addition. Our findings suggest that soil and plant community responses to persistent insect carcass deposition (e.g., press) into heathland vegetation has the potential to carry forward in a way that modifies the baseline ecosystem conditions upon which additional allochthony may act.


Assuntos
Ecossistema , Animais , Regiões Árticas , Biomassa , Lagos , Nitrogênio , Plantas , Solo
2.
Ecology ; 96(2): 499-509, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26240871

RESUMO

Adjacent ecosystems are influenced by organisms that move across boundaries, such as insects with aquatic larval stages and terrestrial adult stages, which transport energy and nutrients from water to land. However, the ecosystem-level effect of aquatic insects on land has generally been ignored, perhaps because the organisms themselves are individually small. At the naturally productive Lake Mývatn, Iceland, we used two readily measured quantities: total insect emergence from water and relative insect density on land, to demonstrate an approach for estimating aquatic insect deposition (e.g., kg N x m(-2) x yr(-1)) to shore. Estimates from emergence traps between 2008 and 20.11 indicated a range of 0.15-3.7 g x m(-2) x yr(-1), or a whole-lake emergence of 3.1-76 Mg/yr; all masses are given as dry mass. Using aerial infall trap measurements of midge relative abundance over land, we developed a local-maximum decay function model to predict proportional midge deposition with distance from the lake. The dispersal model predicted midge abundance with R2 = 0.89, a pattern consistent among years, with peak midge deposition occurring 20-25 m inland and 70% of midges deposited within 100 m of shore. During a high-midge year (2008), we estimate midge deposition within the first 50 m of shoreline to be 100 kg xha(-1) x yr(-1), corresponding to inputs of 10 kg N x ha(-1) x yr(-1) and 1 kg P x ha(-1) x yr(-1), or about three to five times above background terrestrial N deposition rates. Consistent with elevated N input where midges are most dense, we observed that soil available nitrate in resin bags decreases with increasing distance from the lake. Our approach, generalizable to other systems, shows that aquatic insects can be a major source of nutrients to terrestrial ecosystems and have the capacity to significantly affect ecosystem processes.


Assuntos
Chironomidae/fisiologia , Ecossistema , Lagos , Animais , Densidade Demográfica
3.
Oecologia ; 170(3): 735-43, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22526944

RESUMO

Cross-ecosystem movement of nutrients and biomass can have important effects on recipient systems. Emerging aquatic insects are subsidies to terrestrial ecosystems and can influence foodweb interactions in riparian systems. In a 2-year field experiment, we simulated aquatic insect deposition by adding adult midge carcasses (150 g dry mass m(-2) year(-1)) to 1-m(2) heathland plots at a site with low natural midge deposition. We established four levels of midge-addition treatments and measured stable isotopes (δ(13)C and δ(15)N) in plants and arthropods within each treatment. We used a multiple-source isotope Bayesian mixing model to estimate the terrestrial versus aquatic contribution to the diets of arthropods. Aquatic resources were incorporated into plant, detritivore, and predator biomass. Detritivorous Collembola showed the greatest difference in isotope values (+3 ‰ δ(15)N and +4 ‰ δ(13)C) between midge-addition and reference treatments. Isotope values of small spiders followed the same trend of enrichment as Collembola while other arthropods (mites and large spiders) were only enriched after 2 years of midge addition. Although predator diets did not change, they became isotopically enriched via their likely prey (Collembola). Plants also had elevated δ(15)N (+1 ‰) in midge-addition treatments. The time required and amount of midge-derived C and N detected varied and depended on trophic position. Midge-derived nutrients were no longer present in arthropod biomass in the year following midge addition. Aquatic insect carcasses can be rapidly incorporated into terrestrial food webs in nearshore habitats, and repeated inputs can be detected at multiple trophic levels, thus highlighting the importance of the detrital pathway for aquatic to terrestrial cross-ecosystem subsidies.


Assuntos
Artrópodes , Ecossistema , Cadeia Alimentar , Insetos , Lagos , Animais , Organismos Aquáticos , Teorema de Bayes , Biomassa , Isótopos de Carbono/análise , Chironomidae , Modelos Teóricos , Isótopos de Nitrogênio/análise , Plantas , Aranhas
4.
Pathogens ; 11(9)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36145439

RESUMO

Mosquitoes (Culicidae) are ubiquitous flying insects that function as vectors for several viruses that cause disease in humans. Mosquito abundance and diversity are influenced by landscape features and environmental factors such as temperature and precipitation and vary across seasons and years. The range and phenology of many mosquito species that vector viruses relevant to human health are changing. We sampled mosquito communities in central Oklahoma for four years at thirteen sites, collecting over 25,000 mosquitoes; among these, we identified 27 different species, including several that transmit human pathogens and were collected in suburban backyards. Community composition differed across the landscape and changed from early season to late season and year to year. This effort to describe mosquito communities in Oklahoma is a first step toward assessing and predicting arbovirus risk, an ongoing and dynamic public health challenge.

5.
Ecology ; 92(11): 2063-72, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22164831

RESUMO

Aquatic insects are a common and important subsidy to terrestrial systems, yet little is known about how these inputs affect terrestrial food webs, especially around lakes. Mývatn, a lake in northern Iceland, has extraordinary midge (Chironomidae) emergences that result in large inputs of biomass and nutrients to terrestrial arthropod communities. We simulated this lake-to-land resource pulse by collecting midges from Mývatn and spreading their dried carcasses on 1-m2 plots at a nearby site that receives very little midge deposition. We hypothesized a positive bottom-up response of detritivores that would be transmitted to their predators and would persist into the following year. We sampled the arthropod community once per month for two consecutive summers. Midge addition resulted in significantly different arthropod communities and increased densities of some taxa in both years. Detritivores, specifically Diptera larvae, Collembola, and Acari increased in midge-addition plots, and so did some predators and parasitoids. Arthropod densities were still elevated a year after midge addition, and two years of midge addition further increased the density of higher-order consumers (e.g., Coleoptera and Hymenoptera). Midge addition increased arthropod biomass by 68% after one year and 108% after two years. By manipulating the nutrient pulse delivered by midges we were able to elucidate food web consequences of midge deposition and spatial and temporal dynamics that are difficult to determine based on comparative approaches alone. Resources cross ecosystem boundaries and are assimilated over time because of life-history strategies that connect aquatic and terrestrial food webs and these systems cannot be fully understood in isolation from each other.


Assuntos
Ecossistema , Insetos/fisiologia , Lagos , Animais , Demografia , Densidade Demográfica , Fatores de Tempo
6.
Oecologia ; 165(4): 1073-82, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20931232

RESUMO

The relative importance of resources (bottom-up forces) and natural enemies (top-down forces) for regulating food web dynamics has been debated, and both forces have been found to be critical for determining food web structure. How the relative importance of top-down and bottom-up forces varies between sites with different abiotic conditions is not well understood. Using the pitcher plant inquiline community as a model system, I examine how the relative importance of top-down and bottom-up effects differs between two disparate sites. Resources (ant carcasses) and top predators (mosquito larvae) were manipulated in two identical 4 × 4 factorial press experiments, conducted at two geographically distant sites (Michigan and Florida) within the range of the purple pitcher plant, Sarracenia purpurea, and the aquatic community that resides in its leaves. Overall, top predators reduced the density of prey populations while additional resources bolstered them, and the relative importance of top-down and bottom-up forces varied between sites and for different trophic levels. Specifically, top-down effects on protozoa were stronger in Florida than in Michigan, while the opposite pattern was found for rotifers. These findings experimentally demonstrate that the strength of predator-prey interactions, even those involving the same species, vary across space. While only two sites are compared in this study, I hypothesize that site differences in temperature, which influences metabolic rate, may be responsible for variation in consumer-resource interactions. These findings warrant further investigation into the specific factors that modify the relative importance of top-down and bottom-up effects.


Assuntos
Cadeia Alimentar , Sarraceniaceae/fisiologia , Animais , Formigas/crescimento & desenvolvimento , Formigas/fisiologia , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Culicidae/crescimento & desenvolvimento , Culicidae/metabolismo , Comportamento Alimentar/fisiologia , Florida , Larva/crescimento & desenvolvimento , Larva/metabolismo , Michigan , Modelos Biológicos , Folhas de Planta/fisiologia , Densidade Demográfica , Comportamento Predatório/fisiologia , Rotíferos/crescimento & desenvolvimento , Rotíferos/metabolismo
7.
Ecology ; 91(10): 2819-25, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21058543

RESUMO

Understanding how communities respond to changes in temperature is a major challenge for community ecology. Temperature influences the relative degree to which top-down and bottom-up forces structure ecological communities. In greenhouse experiments using the aquatic community found in pitcher plants (Sarracenia purpurea), I tested how temperature affected the relative importance of top-down (mosquito predation) and bottom-up (ant carcasses) forces on protozoa and bacteria populations. While bottom-up effects did not vary consistently with temperature, the top-down effects of predators on protozoa increased at higher temperatures. These results suggest that temperature could change the relative importance of top-down and bottom-up effects in ecological communities. Specifically, higher temperature may increase the strength of top-down effects by raising predator metabolic rate and concomitant processes (e.g., activity, foraging, digestion, growth) relative to cooler temperatures. These findings apply broadly to an understanding of trophic interactions in a variable environment and are especially relevant in the context of ongoing climate change.


Assuntos
Culicidae/fisiologia , Metabolismo Energético , Cadeia Alimentar , Temperatura Alta , Sarraceniaceae/fisiologia , Animais , Bactérias , Comportamento Alimentar , Larva/fisiologia , Densidade Demográfica
8.
Gigascience ; 3(1): 2, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24606731

RESUMO

The co-authors of this paper hereby state their intention to work together to launch the Genomic Observatories Network (GOs Network) for which this document will serve as its Founding Charter. We define a Genomic Observatory as an ecosystem and/or site subject to long-term scientific research, including (but not limited to) the sustained study of genomic biodiversity from single-celled microbes to multicellular organisms.An international group of 64 scientists first published the call for a global network of Genomic Observatories in January 2012. The vision for such a network was expanded in a subsequent paper and developed over a series of meetings in Bremen (Germany), Shenzhen (China), Moorea (French Polynesia), Oxford (UK), Pacific Grove (California, USA), Washington (DC, USA), and London (UK). While this community-building process continues, here we express our mutual intent to establish the GOs Network formally, and to describe our shared vision for its future. The views expressed here are ours alone as individual scientists, and do not necessarily represent those of the institutions with which we are affiliated.

9.
10.
J Pharm Sci ; 99(5): 2492-501, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19967782

RESUMO

It is shown that log P values for water-alkane or water-cyclohexane partitions, and the corresponding Delta log P values when used as descriptors for blood-brain distribution, as log BB, yield equations with very poor correlation coefficients but very good standard deviations, S from 0.25 to 0.33 log units. Using quite large data sets, we have verified that similar S-values apply to predictions of log BB. A suggested model, based on log P for water-dodecane and water-hexadecane partition coefficients, has 109 data points and a fitted S = 0.254 log units. It is essential to include in the model an indicator variable for volatile compounds, and an indicator variable for drugs that contain the carboxylic group. A similar equation based on water-chloroform partition coefficients has 83 data points and a fitted S = 0.287 log units. We can find no causal connection between these log P values and log BB in terms of correlation or in terms of chemical similarity, but conclude that the log P descriptor will yield excellent predictions of log BB provided that predictions are within the chemical space of the compounds used to set up the model. We also show that model based on log P(octanol) and an Abraham descriptor provides a simple and easy method of predicting log BB with an error of no more than 0.31 log units. We have used the Akaike information criterion to investigate the most economic models for log BB.


Assuntos
Barreira Hematoencefálica/metabolismo , Modelos Biológicos , Solventes/química , Água/química , Alcanos/química , Transporte Biológico , Cicloexanos/química , Previsões , Humanos , Modelos Lineares , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/sangue , Preparações Farmacêuticas/metabolismo , Distribuição Tecidual
11.
J Chem Inf Comput Sci ; 43(1): 120-5, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12546544

RESUMO

This report considers the importance of electronic effects in their role in the QSAR of chemical-biological interactions. The problem of accounting for polarizability effects in ligand-substrate interactions is discussed in terms of molecular polarizability (MR) and NVE (number of valence electrons) using additive values for valence electrons. The two approaches give essentially the same result in examples of frog nerve toxicity and examples of nerve toxicity with rabbits and cockroaches. The point is made that no matter how one approaches QSAR, electronic interactions must be considered if we are to begin to develop a science of chemical-biological interactions.


Assuntos
Relação Quantitativa Estrutura-Atividade , Animais , Anuros , Baratas , Modelos Biológicos , Modelos Químicos , Músculo Esquelético/efeitos dos fármacos , Sistema Nervoso/efeitos dos fármacos , Neurotoxinas/química , Neurotoxinas/toxicidade , Coelhos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa