Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 124(12): 1808-1820, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-30971183

RESUMO

RATIONALE: Altered gut microbial composition has been linked to cardiovascular diseases (CVDs), but its functional links to host metabolism and immunity in relation to CVD development remain unclear. OBJECTIVES: To systematically assess functional links between the microbiome and the plasma metabolome, cardiometabolic phenotypes, and CVD risk and to identify diet-microbe-metabolism-immune interactions in well-documented cohorts. METHODS AND RESULTS: We assessed metagenomics-based microbial associations between 231 plasma metabolites and microbial species and pathways in the population-based LLD (Lifelines DEEP) cohort (n=978) and a clinical obesity cohort (n=297). After correcting for age, sex, and body mass index, the gut microbiome could explain ≤11.1% and 16.4% of the variation in plasma metabolites in the population-based and obesity cohorts, respectively. Obese-specific microbial associations were found for lipid compositions in the VLDL, IDL, and LDL lipoprotein subclasses. Bacterial L-methionine biosynthesis and a Ruminococcus species were associated to cardiovascular phenotypes in obese individuals, namely atherosclerosis and liver fat content, respectively. Integration of microbiome-diet-inflammation analysis in relation to metabolic risk score of CVD in the population cohort revealed 48 microbial pathways associated to CVD risk that were largely independent of diet and inflammation. Our data also showed that plasma levels rather than fecal levels of short-chain fatty acids were relevant to inflammation and CVD risk. CONCLUSIONS: This study presents the largest metagenome-based association study on plasma metabolism and microbiome relevance to diet, inflammation, CVD risk, and cardiometabolic phenotypes in both population-based and clinical obesity cohorts. Our findings identified novel bacterial species and pathways that associated to specific lipoprotein subclasses and revealed functional links between the gut microbiome and host health that provide a basis for developing microbiome-targeted therapy for disease prevention and treatment.


Assuntos
Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/metabolismo , Microbioma Gastrointestinal/fisiologia , Metaboloma/fisiologia , Obesidade/epidemiologia , Obesidade/metabolismo , Adulto , Idoso , Doenças Cardiovasculares/genética , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Obesidade/genética , Fenótipo , Estudos Prospectivos , Fatores de Risco
2.
Circ Res ; 124(1): 94-100, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30582442

RESUMO

RATIONALE: Several studies have suggested a role for the gut microbiota in inflammation and atherogenesis. A causal relation relationship between gut microbiota, inflammation, and atherosclerosis has not been explored previously. OBJECTIVE: Here, we investigated whether a proinflammatory microbiota from Caspase1-/- ( Casp1-/-) mice accelerates atherogenesis in Ldlr-/- mice. METHOD AND RESULTS: We treated female Ldlr-/- mice with antibiotics and subsequently transplanted them with fecal microbiota from Casp1-/- mice based on a cohousing approach. Autologous transplantation of fecal microbiota of Ldlr-/- mice served as control. Mice were cohoused for 8 or 13 weeks and fed chow or high-fat cholesterol-rich diet. Fecal samples were collected, and factors related to inflammation, metabolism, intestinal health, and atherosclerotic phenotypes were measured. Unweighted Unifrac distances of 16S rDNA (ribosomal DNA) sequences confirmed the introduction of the Casp1-/- and Ldlr-/- microbiota into Ldlr-/- mice (referred to as Ldlr-/-( Casp1-/-) or Ldlr-/-( Ldlr-/-) mice). Analysis of atherosclerotic lesion size in the aortic root demonstrated a significant 29% increase in plaque size in 13-week high-fat cholesterol-fed Ldlr-/-( Casp1-/-) mice compared with Ldlr-/-( Ldlr-/-) mice. We found increased numbers of circulating monocytes and neutrophils and elevated proinflammatory cytokine levels in plasma in high-fat cholesterol-fed Ldlr-/-( Casp1-/-) compared with Ldlr-/-( Ldlr-/-) mice. Neutrophil accumulation in the aortic root of Ldlr-/-( Casp1-/-) mice was enhanced compared with Ldlr-/-( Ldlr-/-) mice. 16S-rDNA-encoding sequence analysis in feces identified a significant reduction in the short-chain fatty acid-producing taxonomies Akkermansia, Christensenellaceae, Clostridium, and Odoribacter in Ldlr-/-( Casp1-/-) mice. Consistent with these findings, cumulative concentrations of the anti-inflammatory short-chain fatty acids propionate, acetate and butyrate in the cecum were significantly reduced in 13-week high-fat cholesterol-fed Ldlr-/-( Casp1-/-) compared with Ldlr-/-( Ldlr-/-) mice. CONCLUSIONS: Introduction of the proinflammatory Casp1-/- microbiota into Ldlr-/- mice enhances systemic inflammation and accelerates atherogenesis.


Assuntos
Aorta/metabolismo , Doenças da Aorta/microbiologia , Aterosclerose/microbiologia , Bactérias/metabolismo , Citocinas/metabolismo , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Mediadores da Inflamação/metabolismo , Inflamação/microbiologia , Animais , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Caspase 1/genética , Caspase 1/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Disbiose , Ácidos Graxos/metabolismo , Feminino , Interações Hospedeiro-Patógeno , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos Knockout , Placa Aterosclerótica , Receptores de LDL/genética , Receptores de LDL/metabolismo , Fatores de Tempo
3.
Circ Res ; 122(12): 1648-1660, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29545368

RESUMO

RATIONALE: COMMD (copper metabolism MURR1 domain)-containing proteins are a part of the CCC (COMMD-CCDC22 [coiled-coil domain containing 22]-CCDC93 [coiled-coil domain containing 93]) complex facilitating endosomal trafficking of cell surface receptors. Hepatic COMMD1 inactivation decreases CCDC22 and CCDC93 protein levels, impairs the recycling of the LDLR (low-density lipoprotein receptor), and increases plasma low-density lipoprotein cholesterol levels in mice. However, whether any of the other COMMD members function similarly as COMMD1 and whether perturbation in the CCC complex promotes atherogenesis remain unclear. OBJECTIVE: The main aim of this study is to unravel the contribution of evolutionarily conserved COMMD proteins to plasma lipoprotein levels and atherogenesis. METHODS AND RESULTS: Using liver-specific Commd1, Commd6, or Commd9 knockout mice, we investigated the relation between the COMMD proteins in the regulation of plasma cholesterol levels. Combining biochemical and quantitative targeted proteomic approaches, we found that hepatic COMMD1, COMMD6, or COMMD9 deficiency resulted in massive reduction in the protein levels of all 10 COMMDs. This decrease in COMMD protein levels coincided with destabilizing of the core (CCDC22, CCDC93, and chromosome 16 open reading frame 62 [C16orf62]) of the CCC complex, reduced cell surface levels of LDLR and LRP1 (LDLR-related protein 1), followed by increased plasma low-density lipoprotein cholesterol levels. To assess the direct contribution of the CCC core in the regulation of plasma cholesterol levels, Ccdc22 was deleted in mouse livers via CRISPR/Cas9-mediated somatic gene editing. CCDC22 deficiency also destabilized the complete CCC complex and resulted in elevated plasma low-density lipoprotein cholesterol levels. Finally, we found that hepatic disruption of the CCC complex exacerbates dyslipidemia and atherosclerosis in ApoE3*Leiden mice. CONCLUSIONS: Collectively, these findings demonstrate a strong interrelationship between COMMD proteins and the core of the CCC complex in endosomal LDLR trafficking. Hepatic disruption of either of these CCC components causes hypercholesterolemia and exacerbates atherosclerosis. Our results indicate that not only COMMD1 but all other COMMDs and CCC components may be potential targets for modulating plasma lipid levels in humans.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aterosclerose/prevenção & controle , LDL-Colesterol/sangue , Proteínas do Citoesqueleto/metabolismo , Endossomos/metabolismo , Receptores de LDL/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Aterosclerose/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Colesterol/análise , Cromatografia Líquida de Alta Pressão , Proteínas do Citoesqueleto/genética , Deleção de Genes , Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Fígado/química , Fígado/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Camundongos , Camundongos Knockout , Transporte Proteico , Triglicerídeos/análise , Proteínas Supressoras de Tumor/metabolismo
4.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1785-1798, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28723419

RESUMO

The NF-κB family of transcription factors is essential for an effective immune response, but also controls cell metabolism, proliferation and apoptosis. Its broad relevance and the high connectivity to diverse signaling pathways require a tight control of NF-κB activity. To investigate the control of NF-κB activity by phosphorylation of the NF-κB p65 subunit, we generated a knock-in mouse model in which serine 467 (the mouse homolog of human p65 serine 468) was replaced with a non-phosphorylatable alanine (S467A). This substitution caused reduced p65 protein synthesis and diminished TNFα-induced expression of a selected group of NF-κB-dependent genes. Intriguingly, high-fat fed S467A mice displayed increased locomotor activity and energy expenditure, which coincided with a reduced body weight gain. Although glucose metabolism or insulin sensitivity was not improved, diet-induced liver inflammation was diminished in S467A mice. Altogether, this study demonstrates that phosphorylation of p65 serine 467 augment NF-κB activity and exacerbates various deleterious effects of overnutrition in mice.


Assuntos
Envelhecimento/genética , Inflamação/metabolismo , Obesidade/genética , Fator de Transcrição RelA/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Substituição de Aminoácidos/genética , Animais , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Inflamação/genética , Inflamação/patologia , Insulina/metabolismo , Fígado/metabolismo , Fígado/patologia , Camundongos , Obesidade/metabolismo , Obesidade/patologia , Fosforilação , Serina/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Aumento de Peso/genética
5.
Gut ; 67(7): 1317-1327, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29074725

RESUMO

OBJECTIVE: Obesity is a risk factor for non-alcoholic steatohepatitis (NASH). This risk has been attributed to visceral adipose tissue (vAT) expansion associated with increased proinflammatory mediators. Accumulation of CD11c+ proinflammatory adipose tissue macrophages (ATM) is an important driver of vAT inflammation. We investigated the role of ATMs in hepatic inflammation during NASH development. DESIGN: vAT isolated from lean, obese or ATM-depleted (using clodronate liposomes) obese mice was transplanted to lean ldlr-/- acceptor mice. Systemic and hepatic inflammation was assessed either after 2 weeks on standard chow or after 8 weeks on high cholesterol diet (HCD) to induce NASH. RESULTS: Transplanting donor vAT from obese mice increased HCD-induced hepatic macrophage content compared with lean-transplanted mice, worsening liver damage. ATM depletion prior to vAT transplantation reduced this increased hepatic macrophage accumulation. On chow, vAT transplantation induced a more pronounced increase in circulating and hepatic neutrophil numbers in obese-transplanted than lean-transplanted mice, while ATM depletion prior to vAT transplantation reversed this effect. Microarray analysis of fluorescence-activated cell sorting of CD11c+ and CD11c- macrophages isolated from donor adipose tissue showed that obesity resulted in enhanced expression of neutrophil chemotaxis genes specifically in CD11c+ ATMs. Involvement of the neutrophil chemotaxis proteins, CXCL14 and CXCL16, was confirmed by culturing vAT. In humans, CD11c expression in vAT of obese individuals correlated with vAT expression of neutrophil chemotactic genes and with hepatic expression of neutrophil and macrophage marker genes. CONCLUSION: ATMs from obese vAT induce hepatic macrophage accumulation during NASH development, possibly by enhancing neutrophil recruitment.


Assuntos
Tecido Adiposo/patologia , Macrófagos/fisiologia , Infiltração de Neutrófilos/fisiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/complicações , Tecido Adiposo/metabolismo , Animais , Antígenos CD11/metabolismo , Citocinas/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Obesidade/patologia
6.
Hepatology ; 66(3): 794-808, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28073183

RESUMO

Hepatocyte apoptosis in nonalcoholic steatohepatitis (NASH) can lead to fibrosis and cirrhosis, which permanently damage the liver. Understanding the regulation of hepatocyte apoptosis is therefore important to identify therapeutic targets that may prevent the progression of NASH to fibrosis. Recently, increasing evidence has shown that long noncoding (lnc) RNAs are involved in various biological processes and that their dysregulation underlies a number of complex human diseases. By performing gene expression profiling of 4,383 lncRNAs in 82 liver samples from individuals with NASH (n = 48), simple steatosis but no NASH (n = 11), and healthy controls (n = 23), we discovered a liver-specific lncRNA (RP11-484N16.1) on chromosome 18 that showed significantly elevated expression in the liver tissue of NASH patients. This lncRNA, which we named lnc18q22.2 based on its chromosomal location, correlated with NASH grade (r = 0.51, P = 8.11 × 10-7 ), lobular inflammation (r = 0.49, P = 2.35 × 10-6 ), and nonalcoholic fatty liver disease activity score (r = 0.48, P = 4.69 × 10-6 ). The association of lnc18q22.2 to liver steatosis and steatohepatitis was replicated in 44 independent liver biopsies (r = 0.47, P = 0.0013). We provided a genetic structure of lnc18q22.2 showing an extended exon 2 in liver. Knockdown of lnc18q22.2 in four different hepatocyte cell lines resulted in severe phenotypes ranging from reduced cell growth to lethality. This observation was consistent with pathway analyses of genes coexpressed with lnc18q22.2 in human liver or affected by lnc18q22.2 knockdown. CONCLUSION: We identified an lncRNA that can play an important regulatory role in liver function and provide new insights into the regulation of hepatocyte viability in NASH. (Hepatology 2017;66:794-808).


Assuntos
Sobrevivência Celular/genética , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Longo não Codificante/genética , Apoptose/genética , Biópsia por Agulha , Células Cultivadas/metabolismo , Células Cultivadas/patologia , Progressão da Doença , Feminino , Hepatócitos/patologia , Humanos , Imuno-Histoquímica , Masculino , Análise em Microsséries , Medição de Risco , Estudos de Amostragem
7.
Hum Mol Genet ; 24(2): 397-409, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25190711

RESUMO

Although genome-wide association studies and fine mapping have identified 39 non-HLA loci associated with celiac disease (CD), it is difficult to pinpoint the functional variants and susceptibility genes in these loci. We applied integrative approaches to annotate and prioritize functional single nucleotide polymorphisms (SNPs), genes and pathways affected in CD. CD-associated SNPs were intersected with regulatory elements categorized by the ENCODE project to prioritize functional variants, while results from cis-expression quantitative trait loci (eQTL) mapping in 1469 blood samples were combined with co-expression analyses to prioritize causative genes. To identify the key cell types involved in CD, we performed pathway analysis on RNA-sequencing data from different immune cell populations and on publicly available expression data on non-immune tissues. We discovered that CD SNPs are significantly enriched in B-cell-specific enhancer regions, suggesting that, besides T-cell processes, B-cell responses play a major role in CD. By combining eQTL and co-expression analyses, we prioritized 43 susceptibility genes in 36 loci. Pathway and tissue-specific expression analyses on these genes suggested enrichment of CD genes in the Th1, Th2 and Th17 pathways, but also predicted a role for four genes in the intestinal barrier function. We also discovered an intricate transcriptional connectivity between CD susceptibility genes and interferon-γ, a key effector in CD, despite the absence of CD-associated SNPs in the IFNG locus. Using systems biology, we prioritized the CD-associated functional SNPs and genes. By highlighting a role for B cells in CD, which classically has been described as a T-cell-driven disease, we offer new insights into the mechanisms and pathways underlying CD.


Assuntos
Doença Celíaca/genética , Interferon gama/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Doença Celíaca/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Interferon gama/genética , Anotação de Sequência Molecular
8.
Circ Res ; 117(9): 817-24, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26358192

RESUMO

RATIONALE: Evidence suggests that the gut microbiome is involved in the development of cardiovascular disease, with the host-microbe interaction regulating immune and metabolic pathways. However, there was no firm evidence for associations between microbiota and metabolic risk factors for cardiovascular disease from large-scale studies in humans. In particular, there was no strong evidence for association between cardiovascular disease and aberrant blood lipid levels. OBJECTIVES: To identify intestinal bacteria taxa, whose proportions correlate with body mass index and lipid levels, and to determine whether lipid variance can be explained by microbiota relative to age, sex, and host genetics. METHODS AND RESULTS: We studied 893 subjects from the Life-Lines-DEEP population cohort. After correcting for age and sex, we identified 34 bacterial taxa associated with body mass index and blood lipids; most are novel associations. Cross-validation analysis revealed that microbiota explain 4.5% of the variance in body mass index, 6% in triglycerides, and 4% in high-density lipoproteins, independent of age, sex, and genetic risk factors. A novel risk model, including the gut microbiome explained ≤ 25.9% of high-density lipoprotein variance, significantly outperforming the risk model without microbiome. Strikingly, the microbiome had little effect on low-density lipoproteins or total cholesterol. CONCLUSIONS: Our studies suggest that the gut microbiome may play an important role in the variation in body mass index and blood lipid levels, independent of age, sex, and host genetics. Our findings support the potential of therapies altering the gut microbiome to control body mass, triglycerides, and high-density lipoproteins.


Assuntos
Índice de Massa Corporal , Microbioma Gastrointestinal/fisiologia , Lipídeos/sangue , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Bactérias/classificação , Bactérias/genética , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/microbiologia , Colesterol/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Estudos de Coortes , Feminino , Microbioma Gastrointestinal/genética , Interações Hospedeiro-Patógeno , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Medição de Risco/métodos , Medição de Risco/estatística & dados numéricos , Fatores de Risco , Triglicerídeos/sangue , Adulto Jovem
9.
Curr Opin Lipidol ; 27(3): 216-24, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27054442

RESUMO

PURPOSE OF REVIEW: The gut microbiome has now been convincingly linked to human metabolic health but the underlying causality and mechanisms remain poorly understood. This review focuses on the recent progress in establishing the associations between gut microbiome species and lipid metabolism in humans and discusses how to move from association toward causality and mechanistic understanding, which is essential knowledge to bring the observed associations into clinical use. RECENT FINDINGS: Recent population-based association studies have shown that the gut microbiota composition can explain a substantial proportion of the interindividual variation in blood triglycerides and HDL-cholesterol level and predict metabolic response to diet and drug. Faecal transplantation has suggested that this is a causal effect of microbiome on host metabolism, although the underlying mechanism remains largely unexplored. SUMMARY: The gut microbiome is transitioning from being a 'missing' organ to a potential target for therapeutic applications. Due to the complex interplay between the gut microbiome, the host genome, and diet, a systematic approach is required to pave the way for therapeutic development.


Assuntos
Microbioma Gastrointestinal , Metabolismo dos Lipídeos , Animais , Dieta , Humanos , Lipídeos/sangue , Medicina de Precisão
10.
Hum Mol Genet ; 23(9): 2498-510, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24345515

RESUMO

Waist circumference (WC) and waist-to-hip ratio (WHR) are surrogate measures of central adiposity that are associated with adverse cardiovascular events, type 2 diabetes and cancer independent of body mass index (BMI). WC and WHR are highly heritable with multiple susceptibility loci identified to date. We assessed the association between SNPs and BMI-adjusted WC and WHR and unadjusted WC in up to 57 412 individuals of European descent from 22 cohorts collaborating with the NHLBI's Candidate Gene Association Resource (CARe) project. The study population consisted of women and men aged 20-80 years. Study participants were genotyped using the ITMAT/Broad/CARE array, which includes ∼50 000 cosmopolitan tagged SNPs across ∼2100 cardiovascular-related genes. Each trait was modeled as a function of age, study site and principal components to control for population stratification, and we conducted a fixed-effects meta-analysis. No new loci for WC were observed. For WHR analyses, three novel loci were significantly associated (P < 2.4 × 10(-6)). Previously unreported rs2811337-G near TMCC1 was associated with increased WHR (ß ± SE, 0.048 ± 0.008, P = 7.7 × 10(-9)) as was rs7302703-G in HOXC10 (ß = 0.044 ± 0.008, P = 2.9 × 10(-7)) and rs936108-C in PEMT (ß = 0.035 ± 0.007, P = 1.9 × 10(-6)). Sex-stratified analyses revealed two additional novel signals among females only, rs12076073-A in SHC1 (ß = 0.10 ± 0.02, P = 1.9 × 10(-6)) and rs1037575-A in ATBDB4 (ß = 0.046 ± 0.01, P = 2.2 × 10(-6)), supporting an already established sexual dimorphism of central adiposity-related genetic variants. Functional analysis using ENCODE and eQTL databases revealed that several of these loci are in regulatory regions or regions with differential expression in adipose tissue.


Assuntos
Circunferência da Cintura/genética , Adiposidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Relação Cintura-Quadril , População Branca , Adulto Jovem
11.
BMC Med ; 14(1): 107, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27443391

RESUMO

BACKGROUND: Lipid oxidation of membrane phospholipids is accompanied by the formation of oxidation-specific epitopes (OSE). These epitopes are recognized by specific antibodies and represent danger-associated molecular patterns that are generated during chronic inflammatory processes. In a murine model for hepatic inflammation during non-alcoholic fatty liver disease (NAFLD), increased antibody levels targeting OSE were found to be protective. Here, our aim was to determine an association between OSE-specific antibody titers and NAFLD in humans. METHODS: IgM and IgG levels with specificity for various OSE were assessed in the plasma of patients with NAFLD (n = 71) and healthy controls (n = 68). Antibody titers were comprehensively analyzed in patients with NAFLD after classification by histological evaluation of liver biopsies. Statistical analysis was performed to determine significant correlations and odds ratios. To study the specificity for NAFLD, plasma antibody titers were measured in patients with hepatitis C (n = 40) and inflammatory bowel disease (n = 62). RESULTS: IgM titers against OSE were lower in patients with NAFLD compared to controls. Further biopsy-based classification of patients with NAFLD did not show any difference in IgM levels. Plasma IgM titers towards the P1 mimotope demonstrated an inverse correlation with markers for obesity, systemic inflammation, and liver damage. In contrast, hepatitis C and increased disease activity during inflammatory bowel disease was not associated with reduced IgM titers. CONCLUSIONS: Our data highlight the importance of immune recognition of OSE by IgM antibodies in the pathophysiology of NAFLD.


Assuntos
Epitopos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Hepatopatia Gordurosa não Alcoólica/imunologia , Oxirredução , Adulto , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Humanos , Metabolismo dos Lipídeos/imunologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue
12.
Hepatology ; 62(6): 1710-22, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26174697

RESUMO

UNLABELLED: The role of Kupffer cells (KCs) in the pathophysiology of the liver has been firmly established. Nevertheless, KCs have been underexplored as a target for diagnosis and treatment of liver diseases owing to the lack of noninvasive diagnostic tests. We addressed the hypothesis that cholesteryl ester transfer protein (CETP) is mainly derived from KCs and may predict KC content. Microarray analysis of liver and adipose tissue biopsies, obtained from 93 obese subjects who underwent elective bariatric surgery, showed that expression of CETP is markedly higher in liver than adipose tissue. Hepatic expression of CETP correlated strongly with that of KC markers, and CETP messenger RNA and protein colocalized specifically with KCs in human liver sections. Hepatic KC content as well as hepatic CETP expression correlated strongly with plasma CETP concentration. Mechanistic and intervention studies on the role of KCs in determining the plasma CETP concentration were performed in a transgenic (Tg) mouse model expressing human CETP. Selective elimination of KCs from the liver in CETP Tg mice virtually abolished hepatic CETP expression and largely reduced plasma CETP concentration, consequently improving the lipoprotein profile. Conversely, augmentation of KCs after Bacille-Calemette-Guérin vaccination largely increased hepatic CETP expression and plasma CETP. Also, lipid-lowering drugs fenofibrate and niacin reduced liver KC content, accompanied by reduced plasma CETP concentration. CONCLUSIONS: Plasma CETP is predominantly derived from KCs, and plasma CETP level predicts hepatic KC content in humans.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Células de Kupffer/metabolismo , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade
13.
Mediators Inflamm ; 2016: 2042107, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27365896

RESUMO

Background. Naturally occurring substances from the flavanol and anthocyanin family of polyphenols have been proposed to exert beneficial effects in the course of obesity. We hypothesized that their effects on attenuating obesity-induced dyslipidemia as well as the associated inflammatory sequelae especially have health-promoting potential. Methods. Male C57BL/6J mice (n = 52) received a control low-fat diet (LFD; 10 kcal% fat) for 6 weeks followed by 24 weeks of either LFD (n = 13) or high-fat diet (HFD; 45 kcal% fat; n = 13) or HFD supplemented with 0.1% w/w of the flavanol compound epicatechin (HFD+E; n = 13) or an anthocyanin-rich bilberry extract (HFD+B; n = 13). Energy substrate utilization was determined by indirect calorimetry in a subset of mice following the dietary switch and at the end of the experiment. Blood samples were collected at baseline and at 3 days and 4, 12, and 20 weeks after dietary switch and analyzed for systemic lipids and proinflammatory cytokines. Adipose tissue (AT) histopathology and inflammatory gene expression as well as hepatic lipid content were analyzed after sacrifice. Results. The switch from a LFD to a HFD lowered the respiratory exchange ratio and increased plasma cholesterol and hepatic lipid content. These changes were not attenuated by HFD+E or HFD+B. Furthermore, the polyphenol compounds could not prevent HFD-induced systemic rise of TNF-α levels. Interestingly, a significant reduction in Tnf gene expression in HFD+B mice was observed in the AT. Furthermore, HFD+B, but not HFD+E, significantly prevented the early upregulation of circulating neutrophil chemoattractant mKC. However, no differences in AT histopathology were observed between the HFD types. Conclusion. Supplementation of HFD with an anthocyanin-rich bilberry extract but not with the flavanol epicatechin may exert beneficial effects on the systemic early inflammatory response associated with diet-induced obesity. These systemic effects were transient and not observed after prolongation of HFD-feeding (24 weeks). On the tissue level, long-term treatment with bilberry attenuated TNF-α expression in adipose tissue.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Antocianinas/uso terapêutico , Flavanonas/uso terapêutico , Inflamação/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/imunologia , Animais , Dieta com Restrição de Gorduras , Dieta Hiperlipídica/efeitos adversos , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Extratos Vegetais/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Vaccinium myrtillus/química
14.
PLoS Genet ; 9(1): e1003201, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23341781

RESUMO

Recently it has become clear that only a small percentage (7%) of disease-associated single nucleotide polymorphisms (SNPs) are located in protein-coding regions, while the remaining 93% are located in gene regulatory regions or in intergenic regions. Thus, the understanding of how genetic variations control the expression of non-coding RNAs (in a tissue-dependent manner) has far-reaching implications. We tested the association of SNPs with expression levels (eQTLs) of large intergenic non-coding RNAs (lincRNAs), using genome-wide gene expression and genotype data from five different tissues. We identified 112 cis-regulated lincRNAs, of which 45% could be replicated in an independent dataset. We observed that 75% of the SNPs affecting lincRNA expression (lincRNA cis-eQTLs) were specific to lincRNA alone and did not affect the expression of neighboring protein-coding genes. We show that this specific genotype-lincRNA expression correlation is tissue-dependent and that many of these lincRNA cis-eQTL SNPs are also associated with complex traits and diseases.


Assuntos
Regulação da Expressão Gênica , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , RNA Longo não Codificante , Estudo de Associação Genômica Ampla , Genótipo , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Distribuição Tecidual
15.
Eur Heart J ; 36(9): 539-50, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24474739

RESUMO

AIMS: To investigate the causal role of high-density lipoprotein cholesterol (HDL-C) and triglycerides in coronary heart disease (CHD) using multiple instrumental variables for Mendelian randomization. METHODS AND RESULTS: We developed weighted allele scores based on single nucleotide polymorphisms (SNPs) with established associations with HDL-C, triglycerides, and low-density lipoprotein cholesterol (LDL-C). For each trait, we constructed two scores. The first was unrestricted, including all independent SNPs associated with the lipid trait identified from a prior meta-analysis (threshold P < 2 × 10(-6)); and the second a restricted score, filtered to remove any SNPs also associated with either of the other two lipid traits at P ≤ 0.01. Mendelian randomization meta-analyses were conducted in 17 studies including 62,199 participants and 12,099 CHD events. Both the unrestricted and restricted allele scores for LDL-C (42 and 19 SNPs, respectively) associated with CHD. For HDL-C, the unrestricted allele score (48 SNPs) was associated with CHD (OR: 0.53; 95% CI: 0.40, 0.70), per 1 mmol/L higher HDL-C, but neither the restricted allele score (19 SNPs; OR: 0.91; 95% CI: 0.42, 1.98) nor the unrestricted HDL-C allele score adjusted for triglycerides, LDL-C, or statin use (OR: 0.81; 95% CI: 0.44, 1.46) showed a robust association. For triglycerides, the unrestricted allele score (67 SNPs) and the restricted allele score (27 SNPs) were both associated with CHD (OR: 1.62; 95% CI: 1.24, 2.11 and 1.61; 95% CI: 1.00, 2.59, respectively) per 1-log unit increment. However, the unrestricted triglyceride score adjusted for HDL-C, LDL-C, and statin use gave an OR for CHD of 1.01 (95% CI: 0.59, 1.75). CONCLUSION: The genetic findings support a causal effect of triglycerides on CHD risk, but a causal role for HDL-C, though possible, remains less certain.


Assuntos
HDL-Colesterol/genética , Doença da Artéria Coronariana/genética , Polimorfismo de Nucleotídeo Único/genética , Triglicerídeos/genética , Estudos de Casos e Controles , Feminino , Frequência do Gene , Genótipo , Técnicas de Genotipagem , Humanos , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Medição de Risco
16.
Nat Genet ; 39(6): 770-5, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17460697

RESUMO

We conducted a genome-wide association study for type 2 diabetes (T2D) in Icelandic cases and controls, and we found that a previously described variant in the transcription factor 7-like 2 gene (TCF7L2) gene conferred the most significant risk. In addition to confirming two recently identified risk variants, we identified a variant in the CDKAL1 gene that was associated with T2D in individuals of European ancestry (allele-specific odds ratio (OR) = 1.20 (95% confidence interval, 1.13-1.27), P = 7.7 x 10(-9)) and individuals from Hong Kong of Han Chinese ancestry (OR = 1.25 (1.11-1.40), P = 0.00018). The genotype OR of this variant suggested that the effect was substantially stronger in homozygous carriers than in heterozygous carriers. The ORs for homozygotes were 1.50 (1.31-1.72) and 1.55 (1.23-1.95) in the European and Hong Kong groups, respectively. The insulin response for homozygotes was approximately 20% lower than for heterozygotes or noncarriers, suggesting that this variant confers risk of T2D through reduced insulin secretion.


Assuntos
Proteínas de Transporte/genética , Diabetes Mellitus Tipo 2/genética , Resistência à Insulina/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Adulto , Glicemia/metabolismo , Estudos de Casos e Controles , Estudos Transversais , Feminino , Frequência do Gene , Genoma Humano , Humanos , Insulina/metabolismo , Secreção de Insulina , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Fatores de Transcrição TCF/genética , Proteína 1 Semelhante ao Fator 7 de Transcrição , Proteína 2 Semelhante ao Fator 7 de Transcrição
17.
Curr Opin Lipidol ; 26(2): 73-81, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25692344

RESUMO

PURPOSE OF REVIEW: Recent evidence demonstrates that the gut-microbiota can be considered as one of the major factors causing metabolic and cardiovascular diseases. RECENT FINDINGS: Pattern recognition receptors as well as antimicrobial peptides are a key factor in controlling the intestinal microbiota composition. Deficiencies in these genes lead to changes in the composition of the gut-microbiota, causing leakage of endotoxins into the circulation, and the development of low-grade chronic inflammation and insulin resistance. Dietary composition can also affect the microbiota: a diet rich in saturated fats allows the expansion of pathobionts that damage the intestinal epithelial cell layer and compromise its barrier function. In contrast, a diet high in fiber supports the microbiota to produce short-chain fatty acids, thereby promoting energy expenditure and protecting against inflammation and insulin resistance. SUMMARY: The interactions between the microbiota, innate immunity, and diet play an important role in controlling metabolic homeostasis. A properly functioning innate immune system, combined with a low-fat and high-fiber diet, is important in preventing dysbiosis and reducing the susceptibility to developing the metabolic syndrome and its associated cardiovascular diseases.


Assuntos
Imunidade Inata , Síndrome Metabólica/imunologia , Microbiota/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/fisiologia , Dieta , Humanos , Síndrome Metabólica/microbiologia , Receptores de Reconhecimento de Padrão/fisiologia
18.
Biochim Biophys Acta ; 1842(10): 1889-1895, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24834846

RESUMO

The completion of the human genome sequence in 2003 clearly marked the beginning of a new era for biomedical research. It spurred technological progress that was unprecedented in the life sciences, including the development of high-throughput technologies to detect genetic variation and gene expression. The study of genetics has become "big data science". One of the current goals of genetic research is to use genomic information to further our understanding of common complex diseases. An essential first step made towards this goal was by the identification of thousands of single nucleotide polymorphisms showing robust association with hundreds of different traits and diseases. As insight into common genetic variation has expanded enormously and the technology to identify more rare variation has become available, we can utilize these advances to gain a better understanding of disease etiology. This will lead to developments in personalized medicine and P4 healthcare. Here, we review some of the historical events and perspectives before and after the completion of the human genome sequence. We also describe the success of large-scale genetic association studies and how these are expected to yield more insight into complex disorders. We show how we can now combine gene-oriented research and systems-based approaches to develop more complex models to help explain the etiology of common diseases. This article is part of a Special Issue entitled: From Genome to Function.

19.
Biochim Biophys Acta ; 1842(11): 2329-2343, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25128743

RESUMO

Insulin resistance is one of the key components of the metabolic syndrome and it eventually leads to the development of type 2 diabetes, making it one of the biggest medical problems of modern society. Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are tightly associated with insulin resistance. While it is fairly clear that insulin resistance causes hepatic steatosis, it is not known if NAFLD causes insulin resistance. Hepatic inflammation and lipid accumulation are believed to be the main drivers of hepatic insulin resistance in NAFLD. Here we give an overview of the evidence linking hepatic lipid accumulation to the development of insulin resistance, including the accumulation of triacylglycerol and lipid metabolites, such as diacylglycerol and ceramides. In particular, we discuss the role of obesity in this relation by reviewing the current evidence in terms of the reported changes in body weight and/or adipose tissue mass. We further discuss whether the activation or inhibition of inflammatory pathways, Kupffer cells and other immune cells influences the development of insulin resistance. We show that, in contrast to what is commonly believed, neither hepatic steatosis nor hepatic inflammation is sufficient to cause insulin resistance. Many studies show that obesity cannot be ignored as an underlying factor in this relationship and NAFLD is therefore less likely to be one of the main drivers of insulin resistance.

20.
Biochim Biophys Acta ; 1842(11): 2257-65, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25072958

RESUMO

The transcription factor NF-κB plays a critical role in the inflammatory response and it has been implicated in various diseases, including non-alcoholic fatty liver disease (NAFLD). Although transient NF-κB activation may protect tissues from stress, a prolonged NF-κB activation can have a detrimental effect on tissue homeostasis and therefore accurate termination is crucial. Copper Metabolism MURR1 Domain-containing 1 (COMMD1), a protein with functions in multiple pathways, has been shown to suppress NF-κB activity. However, its action in controlling liver inflammation has not yet been investigated. To determine the cell-type-specific contribution of Commd1 to liver inflammation, we used hepatocyte and myeloid-specific Commd1-deficient mice. We also used a mouse model of NAFLD to study low-grade chronic liver inflammation: we fed the mice a high fat, high cholesterol (HFC) diet, which results in hepatic lipid accumulation accompanied by liver inflammation. Depletion of hepatocyte Commd1 resulted in elevated levels of the NF-κB transactivation subunit p65 (RelA) but, surprisingly, the level of liver inflammation was not aggravated. In contrast, deficiency of myeloid Commd1 exacerbated diet-induced liver inflammation. Unexpectedly we observed that hepatic and myeloid Commd1 deficiency in the mice both augmented hepatic lipid accumulation. The elevated levels of proinflammatory cytokines in myeloid Commd1-deficient mice might be responsible for the increased level of steatosis. This increase was not seen in hepatocyte Commd1-deficient mice, in which increased lipid accumulation appeared to be independent of inflammation. Our mouse models demonstrate a cell-type-specific role for Commd1 in suppressing liver inflammation and in the progression of NAFLD.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa