Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nature ; 564(7735): 263-267, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30487605

RESUMO

The placenta is the extraembryonic organ that supports the fetus during intrauterine life. Although placental dysfunction results in major disorders of pregnancy with immediate and lifelong consequences for the mother and child, our knowledge of the human placenta is limited owing to a lack of functional experimental models1. After implantation, the trophectoderm of the blastocyst rapidly proliferates and generates the trophoblast, the unique cell type of the placenta. In vivo, proliferative villous cytotrophoblast cells differentiate into two main sub-populations: syncytiotrophoblast, the multinucleated epithelium of the villi responsible for nutrient exchange and hormone production, and extravillous trophoblast cells, which anchor the placenta to the maternal decidua and transform the maternal spiral arteries2. Here we describe the generation of long-term, genetically stable organoid cultures of trophoblast that can differentiate into both syncytiotrophoblast and extravillous trophoblast. We used human leukocyte antigen (HLA) typing to confirm that the organoids were derived from the fetus, and verified their identities against four trophoblast-specific criteria3. The cultures organize into villous-like structures, and we detected the secretion of placental-specific peptides and hormones, including human chorionic gonadotropin (hCG), growth differentiation factor 15 (GDF15) and pregnancy-specific glycoprotein (PSG) by mass spectrometry. The organoids also differentiate into HLA-G+ extravillous trophoblast cells, which vigorously invade in three-dimensional cultures. Analysis of the methylome reveals that the organoids closely resemble normal first trimester placentas. This organoid model will be transformative for studying human placental development and for investigating trophoblast interactions with the local and systemic maternal environment.


Assuntos
Relações Materno-Fetais , Modelos Biológicos , Organoides/citologia , Organoides/fisiologia , Placentação , Técnicas de Cultura de Tecidos , Trofoblastos/citologia , Trofoblastos/fisiologia , Diferenciação Celular , Movimento Celular , Gonadotropina Coriônica/metabolismo , Metilação de DNA , Decídua/citologia , Feminino , Fator 15 de Diferenciação de Crescimento/metabolismo , Antígenos HLA/metabolismo , Humanos , Organoides/metabolismo , Gravidez , Glicoproteínas beta 1 Específicas da Gravidez/metabolismo , Transcriptoma/genética , Trofoblastos/metabolismo
2.
PLoS Pathog ; 15(12): e1008006, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31830135

RESUMO

Shigella flexneri is historically regarded as the primary agent of bacillary dysentery, yet the closely-related Shigella sonnei is replacing S. flexneri, especially in developing countries. The underlying reasons for this dramatic shift are mostly unknown. Using a zebrafish (Danio rerio) model of Shigella infection, we discover that S. sonnei is more virulent than S. flexneri in vivo. Whole animal dual-RNAseq and testing of bacterial mutants suggest that S. sonnei virulence depends on its O-antigen oligosaccharide (which is unique among Shigella species). We show in vivo using zebrafish and ex vivo using human neutrophils that S. sonnei O-antigen can mediate neutrophil tolerance. Consistent with this, we demonstrate that O-antigen enables S. sonnei to resist phagolysosome acidification and promotes neutrophil cell death. Chemical inhibition or promotion of phagolysosome maturation respectively decreases and increases neutrophil control of S. sonnei and zebrafish survival. Strikingly, larvae primed with a sublethal dose of S. sonnei are protected against a secondary lethal dose of S. sonnei in an O-antigen-dependent manner, indicating that exposure to O-antigen can train the innate immune system against S. sonnei. Collectively, these findings reveal O-antigen as an important therapeutic target against bacillary dysentery, and may explain the rapidly increasing S. sonnei burden in developing countries.


Assuntos
Neutrófilos/imunologia , Antígenos O/imunologia , Shigella sonnei/imunologia , Shigella sonnei/patogenicidade , Virulência/imunologia , Animais , Disenteria Bacilar , Humanos , Peixe-Zebra
3.
J Pathol ; 252(4): 346-357, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32918747

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has resulted in an urgent need to understand the pathophysiology of SARS-CoV-2 infection, to assist in the identification of treatment strategies. Viral tissue tropism is an active area of investigation, one approach to which is identification of virus within tissues by electron microscopy of post-mortem and surgical specimens. Most diagnostic histopathologists have limited understanding of the ultrastructural features of normal cell trafficking pathways, which can resemble intra- and extracellular coronavirus; in addition, viral replication pathways make use of these trafficking pathways. Herein, we review these pathways and their ultrastructural appearances, with emphasis on structures which may be confused with coronavirus. In particular, we draw attention to the fact that, when using routine fixation and processing, the typical 'crown' that characterises a coronavirus is not readily identified on intracellular virions, which are located in membrane-bound vacuoles. In addition, the viral nucleocapsid is seen as black dots within the virion and is more discriminatory in differentiating virions from other cellular structures. The identification of the viral replication organelle, a collection of membranous structures (convoluted membranes) seen at a relatively low scanning power, may help to draw attention to infected cells, which can be sparse. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
COVID-19/virologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/ultraestrutura , Animais , Humanos , Vírion/ultraestrutura , Replicação Viral/genética
4.
J Virol ; 92(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30185590

RESUMO

Despite differences in the pathogenesis and host range of alphaherpesviruses, many stages of their morphogenesis are thought to be conserved. Here, an ultrastructural study of bovine herpesvirus 1 (BoHV-1) envelopment revealed profiles similar to those previously found for herpes simplex virus 1 (HSV-1), with BoHV-1 capsids associating with endocytic tubules. Consistent with the similarity of their genomes and envelopment strategies, the proteomic compositions of BoHV-1 and HSV-1 virions were also comparable. However, BoHV-1 morphogenesis exhibited a diversity in envelopment events. First, heterogeneous primary envelopment profiles were readily detectable at the inner nuclear membrane of BoHV-1-infected cells. Second, the BoHV-1 progeny comprised not just full virions but also an abundance of capsidless, noninfectious light particles (L-particles) that were released from the infected cells in numbers similar to those of virions and in the absence of DNA replication. Proteomic analysis of BoHV-1 L-particles and the much less abundant HSV-1 L-particles revealed that they contained the same complement of envelope proteins as virions but showed variations in tegument content. In the case of HSV-1, the UL46 tegument protein was reproducibly found to be >6-fold enriched in HSV-1 L-particles. More strikingly, the tegument proteins UL36, UL37, UL21, and UL16 were depleted in BoHV-1 but not HSV-1 L-particles. We propose that these combined differences reflect the presence of truly segregated "inner" and "outer" teguments in BoHV-1, making it a critical system for studying the structure and process of tegumentation and envelopment.IMPORTANCE The alphaherpesvirus family includes viruses that infect humans and animals. Hence, not only do they have a significant impact on human health, but they also have a substantial economic impact on the farming industry. While the pathogenic manifestations of the individual viruses differ from host to host, their relative genetic compositions suggest similarity at the molecular level. This study provides a side-by-side comparison of the particle outputs from the major human pathogen HSV-1 and the veterinary pathogen BoHV-1. Ultrastructural and proteomic analyses have revealed that both viruses have broadly similar morphogenesis profiles and infectious virus compositions. However, the demonstration that BoHV-1 has the capacity to generate vast numbers of capsidless enveloped particles that differ from those produced by HSV-1 in composition implies a divergence in the cell biology of these viruses that impacts our general understanding of alphaherpesvirus morphogenesis.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Herpesvirus Bovino 1/metabolismo , Herpesvirus Humano 1/metabolismo , Proteínas Estruturais Virais/metabolismo , Animais , Bovinos , Linhagem Celular , Chlorocebus aethiops , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Humanos , Células Vero , Vírion/metabolismo , Montagem de Vírus/fisiologia
5.
J Virol ; 91(2)2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27852850

RESUMO

The tegument of herpesviruses is a highly complex structural layer between the nucleocapsid and the envelope of virions. Tegument proteins play both structural and regulatory functions during replication and spread, but the interactions and functions of many of these proteins are poorly understood. Here we focus on two tegument proteins from herpes simplex virus 1 (HSV-1), pUL7 and pUL51, which have homologues in all other herpesviruses. We have now identified that HSV-1 pUL7 and pUL51 form a stable and direct protein-protein interaction, their expression levels rely on the presence of each other, and they function as a complex in infected cells. We demonstrate that expression of the pUL7-pUL51 complex is important for efficient HSV-1 assembly and plaque formation. Furthermore, we also discovered that the pUL7-pUL51 complex localizes to focal adhesions at the plasma membrane in both infected cells and in the absence of other viral proteins. The expression of pUL7-pUL51 is important to stabilize focal adhesions and maintain cell morphology in infected cells and cells infected with viruses lacking pUL7 and/or pUL51 round up more rapidly than cells infected with wild-type HSV-1. Our data suggest that, in addition to the previously reported functions in virus assembly and spread for pUL51, the pUL7-pUL51 complex is important for maintaining the attachment of infected cells to their surroundings through modulating the activity of focal adhesion complexes. IMPORTANCE: Herpesviridae is a large family of highly successful human and animal pathogens. Virions of these viruses are composed of many different proteins, most of which are contained within the tegument, a complex structural layer between the nucleocapsid and the envelope within virus particles. Tegument proteins have important roles in assembling virus particles as well as modifying host cells to promote virus replication and spread. However, little is known about the function of many tegument proteins during virus replication. Our study focuses on two tegument proteins from herpes simplex virus 1 that are conserved in all herpesviruses: pUL7 and pUL51. We demonstrate that these proteins directly interact and form a functional complex that is important for both virus assembly and modulation of host cell morphology. Further, we identify for the first time that these conserved herpesvirus tegument proteins localize to focal adhesions in addition to cytoplasmic juxtanuclear membranes within infected cells.


Assuntos
DNA Helicases/metabolismo , DNA Primase/metabolismo , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Complexos Multiproteicos/metabolismo , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/metabolismo , Animais , Chlorocebus aethiops , DNA Helicases/genética , DNA Primase/genética , Regulação Viral da Expressão Gênica , Células HEK293 , Herpesvirus Humano 1/ultraestrutura , Humanos , Ligação Proteica , Transporte Proteico , Células Vero , Proteínas da Matriz Viral/genética , Proteínas Virais/genética , Montagem de Vírus
6.
EMBO Rep ; 17(7): 1029-43, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27259462

RESUMO

Septins, cytoskeletal proteins with well-characterised roles in cytokinesis, form cage-like structures around cytosolic Shigella flexneri and promote their targeting to autophagosomes. However, the processes underlying septin cage assembly, and whether they influence S. flexneri proliferation, remain to be established. Using single-cell analysis, we show that the septin cages inhibit S. flexneri proliferation. To study mechanisms of septin cage assembly, we used proteomics and found mitochondrial proteins associate with septins in S. flexneri-infected cells. Strikingly, mitochondria associated with S. flexneri promote septin assembly into cages that entrap bacteria for autophagy. We demonstrate that the cytosolic GTPase dynamin-related protein 1 (Drp1) interacts with septins to enhance mitochondrial fission. To avoid autophagy, actin-polymerising Shigella fragment mitochondria to escape from septin caging. Our results demonstrate a role for mitochondria in anti-Shigella autophagy and uncover a fundamental link between septin assembly and mitochondria.


Assuntos
Autofagia , Mitocôndrias/metabolismo , Septinas/metabolismo , Shigella/fisiologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas do Citoesqueleto/metabolismo , Humanos , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Ligação Proteica
7.
Int J Mol Sci ; 19(3)2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29562663

RESUMO

BK polyomavirus (BKPyV; hereafter referred to as BK) causes a lifelong chronic infection and is associated with debilitating disease in kidney transplant recipients. Despite its importance, aspects of the virus life cycle remain poorly understood. In addition to the structural proteins, the late region of the BK genome encodes for an auxiliary protein called agnoprotein. Studies on other polyomavirus agnoproteins have suggested that the protein may contribute to virion infectivity. Here, we demonstrate an essential role for agnoprotein in BK virus release. Viruses lacking agnoprotein fail to release from host cells and do not propagate to wild-type levels. Despite this, agnoprotein is not essential for virion infectivity or morphogenesis. Instead, agnoprotein expression correlates with nuclear egress of BK virions. We demonstrate that the agnoprotein binding partner α-soluble N-ethylmaleimide sensitive fusion (NSF) attachment protein (α-SNAP) is necessary for BK virion release, and siRNA knockdown of α-SNAP prevents nuclear release of wild-type BK virions. These data highlight a novel role for agnoprotein and begin to reveal the mechanism by which polyomaviruses leave an infected cell.


Assuntos
Vírus BK/fisiologia , Infecções por Polyomavirus/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , Vírus BK/genética , Vírus BK/ultraestrutura , Núcleo Celular/metabolismo , Chlorocebus aethiops , Regulação Viral da Expressão Gênica , Membrana Nuclear/metabolismo , Ligação Proteica , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Transcrição Gênica , Células Vero , Vírion/metabolismo , Vírion/ultraestrutura
8.
J Gen Virol ; 98(10): 2543-2555, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28933687

RESUMO

Vaccinia virus produces two distinct infectious virions; the single-enveloped intracellular mature virus (IMV), which remains in the cell until cell lysis, and the double-enveloped extracellular enveloped virus (EEV), which mediates virus spread. The latter is derived from a triple-enveloped intracellular enveloped virus (IEV) precursor, which is transported to the cell periphery by the kinesin-1 motor complex. This transport involves the viral protein A36 as well as F12 and E2. A36 is an integral membrane protein associated with the outer virus envelope and is the only known direct link between virion and kinesin-1 complex. Yet in the absence of A36 virion egress still occurs on microtubules, albeit at reduced efficiency. In this paper double-fluorescent labelling of the capsid protein A5 and outer-envelope protein F13 was exploited to visualize IEV transport by live-cell imaging in the absence of either A36 or F12. During the generation of recombinant viruses expressing both A5-GFP and F13-mCherry a plaque size defect was identified that was particularly severe in viruses lacking A36. Electron microscopy showed that this phenotype was caused by abnormal wrapping of IMV to form IEV, and this resulted in reduced virus egress to the cell surface. The aberrant wrapping phenotype suggests that the fluorescent fusion protein interferes with an interaction of F13 with the IMV surface that is required for tight association between IMVs and wrapping membranes. The severity of this defect suggests that these viruses are imperfect tools for characterizing virus egress.

9.
Traffic ; 15(2): 157-78, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24152084

RESUMO

Herpes simplex virus 1 (HSV1) is an enveloped virus that uses undefined transport carriers for trafficking of its glycoproteins to envelopment sites. Screening of an siRNA library against 60 Rab GTPases revealed Rab6 as the principal Rab involved in HSV1 infection, with its depletion preventing Golgi-to-plasma membrane transport of HSV1 glycoproteins in a pathway used by several integral membrane proteins but not the luminal secreted protein Gaussia luciferase. Knockdown of Rab6 reduced virus yield to 1% and inhibited capsid envelopment, revealing glycoprotein exocytosis as a prerequisite for morphogenesis. Rab6-dependent virus production did not require the effectors myosin-II, bicaudal-D, dynactin-1 or rabkinesin-6, but was facilitated by ERC1, a factor involved in linking microtubules to the cell cortex. Tubulation and exocytosis of Rab6-positive, glycoprotein-containing membranes from the Golgi was substantially augmented by infection, resulting in enhanced and targeted delivery to cell tips. This reveals HSV1 morphogenesis as one of the first biological processes shown to be dependent on the exocytic activity of Rab6.


Assuntos
Herpesvirus Humano 1/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Rede trans-Golgi/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Exocitose , Células HeLa , Herpesvirus Humano 1/fisiologia , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transporte Proteico , Montagem de Vírus , Proteínas rab de Ligação ao GTP/genética
10.
EMBO J ; 31(21): 4204-20, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-22990238

RESUMO

Enveloped viruses employ diverse and complex strategies for wrapping at cellular membranes, many of which are poorly understood. Here, an ultrastructural study of herpes simplex virus 1 (HSV1)-infected cells revealed envelopment in tubular membranes. These tubules were labelled by the fluid phase marker horseradish peroxidase (HRP), and were observed to wrap capsids as early as 2 min after HRP addition, indicating that the envelope had recently cycled from the cell surface. Consistent with this, capsids did not colocalise with either the trans-Golgi network marker TGN46 or late endosomal markers, but showed coincidence with the transferrin receptor. Virus glycoproteins were retrieved from the plasma membrane (PM) to label wrapping capsids, a process that was dependent on both dynamin and Rab5. Combined depletion of Rab5 and Rab11 reduced virus yield to <1%, resulting in aberrant localisation of capsids. These results suggest that endocytosis from the PM into endocytic tubules provides the main source of membrane for HSV1, and reveal a new mechanism for virus exploitation of the endocytic pathway.


Assuntos
Capsídeo/metabolismo , Endocitose/fisiologia , Herpesvirus Humano 1/metabolismo , Membranas Intracelulares/metabolismo , Montagem de Vírus/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Western Blotting , Membrana Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Citometria de Fluxo , Imunofluorescência , Glicoproteínas/metabolismo , Células HeLa , Herpes Simples/metabolismo , Herpes Simples/virologia , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Proteínas de Membrana Lisossomal/metabolismo , Células Vero , Proteínas do Envelope Viral/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/genética , Rede trans-Golgi/metabolismo , Rede trans-Golgi/virologia
11.
PLoS Pathog ; 10(1): e1003896, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24497829

RESUMO

Varicella zoster virus (VZV) is the etiological agent of chickenpox and shingles, diseases characterized by epidermal skin blistering. Using a calcium-induced keratinocyte differentiation model we investigated the interaction between epidermal differentiation and VZV infection. RNA-seq analysis showed that VZV infection has a profound effect on differentiating keratinocytes, altering the normal process of epidermal gene expression to generate a signature that resembles patterns of gene expression seen in both heritable and acquired skin-blistering disorders. Further investigation by real-time PCR, protein analysis and electron microscopy revealed that VZV specifically reduced expression of specific suprabasal cytokeratins and desmosomal proteins, leading to disruption of epidermal structure and function. These changes were accompanied by an upregulation of kallikreins and serine proteases. Taken together VZV infection promotes blistering and desquamation of the epidermis, both of which are necessary to the viral spread and pathogenesis. At the same time, analysis of the viral transcriptome provided evidence that VZV gene expression was significantly increased following calcium treatment of keratinocytes. Using reporter viruses and immunohistochemistry we confirmed that VZV gene and protein expression in skin is linked with cellular differentiation. These studies highlight the intimate host-pathogen interaction following VZV infection of skin and provide insight into the mechanisms by which VZV remodels the epidermal environment to promote its own replication and spread.


Assuntos
Diferenciação Celular , Varicela/metabolismo , Regulação Viral da Expressão Gênica/fisiologia , Herpesvirus Humano 3/fisiologia , Queratinócitos/metabolismo , RNA Viral/biossíntese , Proteínas Virais/biossíntese , Replicação Viral/fisiologia , Varicela/genética , Feminino , Humanos , Queratinócitos/patologia , Queratinócitos/virologia , Masculino , RNA Viral/genética , Análise de Sequência de RNA , Proteínas Virais/genética
13.
J Clin Microbiol ; 53(6): 1873-83, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25832298

RESUMO

Human noroviruses (HuNoVs) are a major cause of viral gastroenteritis, with an estimated 3 million cases per year in the United Kingdom. HuNoVs have recently been isolated from pet dogs in Europe (M. Summa, C.-H. von Bonsdorff, and L. Maunula, J Clin Virol 53:244-247, 2012, http://dx.doi.org/10.1016/j.jcv.2011.12.014), raising concerns about potential zoonotic infections. With 31% of United Kingdom households owning a dog, this could prove to be an important transmission route. To examine this risk, canine tissues were studied for their ability to bind to HuNoV in vitro. In addition, canine stool samples were analyzed for the presence of viral nucleic acid, and canine serum samples were tested for the presence of anti-HuNoV antibodies. The results showed that seven different genotypes of HuNoV virus-like particles (VLPs) can bind to canine gastrointestinal tissue, suggesting that infection is at least theoretically possible. Although HuNoV RNA was not identified in stool samples from 248 dogs, serological evidence of previous exposure to HuNoV was obtained in 43/325 canine serum samples. Remarkably, canine seroprevalence for different HuNoV genotypes mirrored the seroprevalence in the human population. Though entry and replication within cells have not been demonstrated, the canine serological data indicate that dogs produce an immune response to HuNoV, implying productive infection. In conclusion, this study reveals zoonotic implications for HuNoV, and to elucidate the significance of this finding, further epidemiological and molecular investigations will be essential.


Assuntos
Infecções por Caliciviridae , Cães/virologia , Norovirus , Zoonoses , Animais , Anticorpos Antivirais/sangue , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/virologia , Fezes/virologia , Feminino , Trato Gastrointestinal/metabolismo , Humanos , Norovirus/genética , Norovirus/isolamento & purificação , Norovirus/metabolismo , Saliva/metabolismo , Saliva/virologia , Estudos Soroepidemiológicos , Reino Unido/epidemiologia , Vírion/metabolismo , Zoonoses/epidemiologia , Zoonoses/virologia
14.
PLoS Pathog ; 9(9): e1003588, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039575

RESUMO

Autophagy, an ancient and highly conserved intracellular degradation process, is viewed as a critical component of innate immunity because of its ability to deliver cytosolic bacteria to the lysosome. However, the role of bacterial autophagy in vivo remains poorly understood. The zebrafish (Danio rerio) has emerged as a vertebrate model for the study of infections because it is optically accessible at the larval stages when the innate immune system is already functional. Here, we have characterized the susceptibility of zebrafish larvae to Shigella flexneri, a paradigm for bacterial autophagy, and have used this model to study Shigella-phagocyte interactions in vivo. Depending on the dose, S. flexneri injected in zebrafish larvae were either cleared in a few days or resulted in a progressive and ultimately fatal infection. Using high resolution live imaging, we found that S. flexneri were rapidly engulfed by macrophages and neutrophils; moreover we discovered a scavenger role for neutrophils in eliminating infected dead macrophages and non-immune cell types that failed to control Shigella infection. We observed that intracellular S. flexneri could escape to the cytosol, induce septin caging and be targeted to autophagy in vivo. Depletion of p62 (sequestosome 1 or SQSTM1), an adaptor protein critical for bacterial autophagy in vitro, significantly increased bacterial burden and host susceptibility to infection. These results show the zebrafish larva as a new model for the study of S. flexneri interaction with phagocytes, and the manipulation of autophagy for anti-bacterial therapy in vivo.


Assuntos
Autofagia , Disenteria Bacilar/metabolismo , Macrófagos/metabolismo , Neutrófilos/metabolismo , Shigella flexneri/metabolismo , Peixe-Zebra/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Modelos Animais de Doenças , Disenteria Bacilar/genética , Disenteria Bacilar/patologia , Humanos , Macrófagos/microbiologia , Macrófagos/patologia , Neutrófilos/microbiologia , Neutrófilos/patologia , Peixe-Zebra/genética , Peixe-Zebra/microbiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
15.
Diabetologia ; 57(8): 1635-44, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24865615

RESUMO

AIMS/HYPOTHESIS: Hypoxic damage complicates islet isolation for transplantation and may contribute to beta cell failure in type 2 diabetes. Polymorphisms in the SLC30A8 gene, encoding the secretory granule zinc transporter 8 (ZnT8), influence type 2 diabetes risk, conceivably by modulating cytosolic Zn(2+) levels. We have therefore explored the role of ZnT8 and cytosolic Zn(2+) in the response to hypoxia of pancreatic islet cells. METHODS: Human, mouse or rat islets were isolated and exposed to varying O2 tensions. Cytosolic free zinc was measured using the adenovirally expressed recombinant targeted zinc probe eCALWY4. Gene expression was measured using quantitative (q)RT-PCR, western (immuno-) blotting or immunocytochemistry. Beta cells were identified by insulin immunoreactivity. RESULTS: Deprivation of O2 (1% vs 5% or 21%) for 24 h lowered free cytosolic Zn(2+) concentrations by ~40% (p < 0.05) and ~30% (p < 0.05) in mouse and human islet cells, respectively. Hypoxia similarly decreased SLC30A8 mRNA expression in islets, and immunoreactivity in beta cells. Implicating lowered ZnT8 levels in the hypoxia-induced fall in cytosolic Zn(2+), genetic ablation of Slc30a8 from mouse islets lowered cytosolic Zn(2+) by ~40% (p < 0.05) and decreased the induction of metallothionein (Mt1, Mt2) genes. Cell survival in the face of hypoxia was enhanced in small islets of older (>12 weeks) Slc30a8 null mice vs controls, but not younger animals. CONCLUSIONS/INTERPRETATION: The response of pancreatic beta cells to hypoxia is characterised by decreased SLC30A8 expression and lowered cytosolic Zn(2+) concentrations. The dependence on ZnT8 of hypoxia-induced changes in cell survival may contribute to the actions of SLC30A8 variants on diabetes risk in humans.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Hipóxia/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Zinco/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Citosol/metabolismo , Humanos , Metalotioneína/genética , Metalotioneína/metabolismo , Camundongos , Ratos , Transportador 8 de Zinco
16.
J Virol ; 87(14): 7921-32, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23658449

RESUMO

In addition to transmission involving extracellular free particles, a generally accepted model of virus propagation is one wherein virus replicates in one cell, producing infectious particles that transmit to the next cell via cell junctions or induced polarized contacts. This mechanism of spread is especially important in the presence of neutralizing antibody, and the concept underpins analysis of virus spread, plaque size, viral and host functions, and general mechanisms of virus propagation. Here, we demonstrate a novel process involved in cell-to-cell transmission of herpes simplex virus (HSV) in human skin cells that has not previously been appreciated. Using time-lapse microscopy of fluorescent viruses, we show that HSV infection induces the polarized migration of skin cells into the site of infection. In the presence of neutralizing antibody, uninfected skin cells migrate to the initial site of infection and spread over infected cells to become infected in a spatially confined cluster containing hundreds of cells. The cells in this cluster do not undergo cytocidal cell lysis but harbor abundant enveloped particles within cells and cell-free virus within interstitial regions below the cluster surface. Cells at the base and outside the cluster were generally negative for virus immediate-early expression. We further show, using spatially separated monolayer assays, that at least one component of this induced migration is the paracrine stimulation of a cytotactic response from infected cells to uninfected cells. The existence of this process changes our concept of virus transmission and the potential functions, virus, and host factors involved.


Assuntos
Comunicação Celular/fisiologia , Herpes Simples/transmissão , Queratinócitos/virologia , Simplexvirus , Pele/citologia , Anticorpos Neutralizantes/imunologia , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Humanos , Queratinócitos/fisiologia , Queratinócitos/ultraestrutura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Pele/virologia , Imagem com Lapso de Tempo
17.
J Biol Chem ; 287(43): 35849-59, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22915587

RESUMO

Adeno-associated virus/phage (AAVP) is a gene delivery vector constructed as a hybrid between adeno-associated virus and filamentous phage. Tumor targeting following systemic administration has previously been demonstrated in several in vivo cancer models, with tumor specificity achieved through display of an α(v) integrin-targeting ligand on the capsid. However, high titers of AAVP are required for transduction of large numbers of mammalian cells. This study is the first to investigate the mechanisms involved in entry and intracellular trafficking of AAVP. Using a combination of flow cytometry, confocal, and electron microscopy techniques, together with pharmacological agents, RNAi and dominant negative mutants, we have demonstrated that targeted AAVP endocytosis is both dynamin and clathrin-dependent. Following entry, the majority of AAVP particles are sequestered by the endosomal-lysosomal degradative pathway. Finally, we have demonstrated that disruption of this pathway leads to improved transgene expression by AAVP, thus demonstrating that escape from the late endosomes/lysosomes is a critical step for improving gene delivery by AAVP. These findings have important implications for the rational design of improved AAVP and RGD-targeted vectors.


Assuntos
Clatrina/metabolismo , Dependovirus/fisiologia , Dinaminas/metabolismo , Endocitose , Endossomos/metabolismo , Lisossomos/metabolismo , Internalização do Vírus , Transporte Biológico Ativo , Endossomos/virologia , Células HEK293 , Células HeLa , Humanos , Lisossomos/virologia , Transfecção
18.
Anal Biochem ; 441(1): 21-31, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23756734

RESUMO

We have tested the application of high-mannose-binding lectins as analytical reagents to identify N-glycans in the early secretory pathway of HeLa cells during subcellular fractionation and cytochemistry. Post-endoplasmic reticulum (ER) pre-Golgi intermediates were separated from the ER on Nycodenz-sucrose gradients, and the glycan composition of each gradient fraction was profiled using lectin blotting. The fractions containing the post-ER pre-Golgi intermediates are found to contain a subset of N-linked α-mannose glycans that bind the lectins Galanthus nivalis agglutinin (GNA), Pisum sativum agglutinin (PSA), and Lens culinaris agglutinin (LCA) but not lectins binding Golgi-modified glycans. Cytochemical analysis demonstrates that high-mannose-containing glycoproteins are predominantly localized to the ER and the early secretory pathway. Indirect immunofluorescence microscopy revealed that GNA colocalizes with the ER marker protein disulfide isomerase (PDI) and the COPI coat protein ß-COP. In situ competition with concanavalin A (ConA), another high-mannose specific lectin, and subsequent GNA lectin histochemistry refined the localization of N-glyans containing nonreducing mannosyl groups, accentuating the GNA vesicular staining. Using GNA and treatments that perturb ER-Golgi transport, we demonstrate that lectins can be used to detect changes in membrane trafficking pathways histochemically. Overall, we find that conjugated plant lectins are effective tools for combinatory biochemical and cytological analysis of membrane trafficking of glycoproteins.


Assuntos
Técnicas Citológicas , Glicoproteínas/química , Glicoproteínas/metabolismo , Membranas Intracelulares/metabolismo , Oligossacarídeos/análise , Oligossacarídeos/metabolismo , Lectinas de Plantas/química , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Galanthus/química , Glicoproteínas/análise , Complexo de Golgi/química , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/química , Iohexol , Lens (Planta)/química , Oligossacarídeos/química , Pisum sativum/química , Transporte Proteico , Sacarose
19.
J Gen Virol ; 93(Pt 9): 1876-1886, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22622330

RESUMO

Vaccinia virus (VACV) spreads across cell monolayers fourfold faster than predicted from its replication kinetics. Early after infection, infected cells repulse some superinfecting extracellular enveloped virus (EEV) particles by the formation of actin tails from the cell surface, thereby causing accelerated spread to uninfected cells. This strategy requires the expression of two viral proteins, A33 and A36, on the surface of infected cells and upon contact with EEV this complex induces actin polymerization. Here we have studied this phenomenon further and investigated whether A33 and A36 expression in cell lines causes an increase in VACV plaque size, whether these proteins are able to block superinfection by EEV, and which protein(s) on the EEV surface are required to initiate the formation of actin tails from infected cells. Data presented show that VACV plaque size was not increased by expression of A33 and A36, and these proteins did not block entry of the majority of EEV binding to these cells. In contrast, expression of proteins A56 and K2 inhibited entry of both EEV and intracellular mature virus. Lastly, VACV protein B5 was required on EEV to induce the formation of actin tails at the surface of cells expressing A33 and A36, and B5 short consensus repeat 4 is critical for this induction.


Assuntos
Membrana Celular/virologia , Superinfecção/virologia , Vaccinia virus/fisiologia , Vacínia/virologia , Proteínas da Matriz Viral/metabolismo , Vírion/fisiologia , Actinas/metabolismo , Membrana Celular/metabolismo , Células HeLa , Humanos , Vacínia/metabolismo , Vaccinia virus/genética , Proteínas da Matriz Viral/genética , Ensaio de Placa Viral , Vírion/genética , Internalização do Vírus
20.
PLoS Pathog ; 6(2): e1000785, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20195521

RESUMO

Vaccinia virus (VACV) uses microtubules for export of virions to the cell surface and this process requires the viral protein F12. Here we show that F12 has structural similarity to kinesin light chain (KLC), a subunit of the kinesin-1 motor that binds cargo. F12 and KLC share similar size, pI, hydropathy and cargo-binding tetratricopeptide repeats (TPRs). Moreover, molecular modeling of F12 TPRs upon the crystal structure of KLC2 TPRs showed a striking conservation of structure. We also identified multiple TPRs in VACV proteins E2 and A36. Data presented demonstrate that F12 is critical for recruitment of kinesin-1 to virions and that a conserved tryptophan and aspartic acid (WD) motif, which is conserved in the kinesin-1-binding sequence (KBS) of the neuronal protein calsyntenin/alcadein and several other cellular kinesin-1 binding proteins, is essential for kinesin-1 recruitment and virion transport. In contrast, mutation of WD motifs in protein A36 revealed they were not required for kinesin-1 recruitment or IEV transport. This report of a viral KLC-like protein containing a KBS that is conserved in several cellular proteins advances our understanding of how VACV recruits the kinesin motor to virions, and exemplifies how viruses use molecular mimicry of cellular components to their advantage.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Vaccinia virus/fisiologia , Proteínas Virais/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Microscopia Crioeletrônica , Células HeLa , Humanos , Cinesinas , Microscopia Imunoeletrônica , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Mimetismo Molecular , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Estrutura Terciária de Proteína , Vaccinia virus/patogenicidade , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/patogenicidade , Vírion/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa