Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Arch Toxicol ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814333

RESUMO

Tert-butyl hydroperoxide (t-BuOOH) is an organic hydroperoxide widely used as a model compound to induce oxidative stress. It leads to a plethora of cellular damage, including lipid peroxidation, DNA double-strand breaks (DNA DSBs), and breakdown of the mitochondrial membrane potential (MMP). We could show in several cell lines that t-BuOOH induces ferroptosis, triggered by iron-dependent lipid peroxidation. We have further revealed that not only t-BuOOH-mediated ferroptosis, but also DNA DSBs and loss of MMP are prevented by cell-cell contacts. The underlying mechanisms are not known. Here, we show in murine fibroblasts and a human colon carcinoma cell line that t-BuOOH (50 or 100 µM, resp.) causes an increase in intracellular Ca2+, and that this increase is key to lipid peroxidation and ferroptosis, DNA DSB formation and dissipation of the MMP. We further demonstrate that cell-cell contacts prevent t-BuOOH-mediated raise in intracellular Ca2+. Hence, we provide novel insights into the mechanism of t-BuOOH-triggered cellular damage including ferroptosis and propose a model in which cell-cell contacts control intracellular Ca2+ levels to prevent lipid peroxidation, DNA DSB-formation and loss of MMP. Since Ca2+ is a central player of toxicity in response to oxidative stress and is involved in various cell death pathways, our observations suggest a broad protective function of cell-cell contacts against a variety of exogenous toxicants.

2.
Heredity (Edinb) ; 126(1): 23-37, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32632284

RESUMO

Assessing the genetic adaptive potential of populations and species is essential for better understanding evolutionary processes. However, the expression of genetic variation may depend on environmental conditions, which may speed up or slow down evolutionary responses. Thus, the same selection pressure may lead to different responses. Against this background, we here investigate the effects of thermal stress on genetic variation, mainly under controlled laboratory conditions. We estimated additive genetic variance (VA), narrow-sense heritability (h2) and the coefficient of genetic variation (CVA) under both benign control and stressful thermal conditions. We included six species spanning a diverse range of plant and animal taxa, and a total of 25 morphological and life-history traits. Our results show that (1) thermal stress reduced fitness components, (2) the majority of traits showed significant genetic variation and that (3) thermal stress affected the expression of genetic variation (VA, h2 or CVA) in only one-third of the cases (25 of 75 analyses, mostly in one clonal species). Moreover, the effects were highly species-specific, with genetic variation increasing in 11 and decreasing in 14 cases under stress. Our results hence indicate that thermal stress does not generally affect the expression of genetic variation under laboratory conditions but, nevertheless, increases or decreases genetic variation in specific cases. Consequently, predicting the rate of genetic adaptation might not be generally complicated by environmental variation, but requires a careful case-by-case consideration.


Assuntos
Evolução Molecular , Variação Genética , Plantas/genética , Animais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa