Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(9)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38286626

RESUMO

It is widely accepted that fear memories are consolidated through protein synthesis-dependent changes in the basolateral amygdala complex (BLA). However, recent studies show that protein synthesis is not required to consolidate the memory of a new dangerous experience when it is similar to a prior experience. Here, we examined whether the protein synthesis requirement for consolidating the new experience varies with its spatial and temporal distance from the prior experience. Female and male rats were conditioned to fear a stimulus (S1, e.g., light) paired with shock in stage 1 and a second stimulus (S2, e.g., tone) that preceded additional S1-shock pairings (S2-S1-shock) in stage 2. The latter stage was followed by a BLA infusion of a protein synthesis inhibitor, cycloheximide, or vehicle. Subsequent testing with S2 revealed that protein synthesis in the BLA was not required to consolidate fear to S2 when the training stages occurred 48 h apart in the same context; was required when they were separated by 14 d or occurred in different contexts; but was again not required if S1 was re-presented after the delay or in the different context. Similarly, protein synthesis in the BLA was not required to reconsolidate fear to S2 when the training stages occurred 48 h apart but was required when they occurred 14 d apart. Thus, the protein synthesis requirement for consolidating/reconsolidating fear memories in the BLA is determined by similarity between present and past experiences, the time and place in which they occur, and reminders of the past experiences.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Consolidação da Memória , Ratos , Masculino , Feminino , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Consolidação da Memória/fisiologia , Inibidores da Síntese de Proteínas/farmacologia , Cicloeximida/farmacologia , Medo/fisiologia
2.
J Neurosci ; 44(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37963767

RESUMO

Activity in the basolateral amygdala complex (BLA) is needed to encode fears acquired through contact with both innate sources of danger (i.e., things that are painful) and learned sources of danger (e.g., being threatened with a gun). However, within the BLA, the molecular processes required to consolidate the two types of fear are not the same: protein synthesis is needed to consolidate the first type of fear (so-called first-order fear) but not the latter (so-called second-order fear). The present study examined why first- and second-order fears differ in this respect. Specifically, it used a range of conditioning protocols in male and female rats, and assessed the effects of a BLA infusion of the protein synthesis inhibitor, cycloheximide, on first- and second-order conditioned fear. The results revealed that the differential protein synthesis requirements for consolidation of first- and second-order fears reflect differences in what is learned in each case. Protein synthesis in the BLA is needed to consolidate fears that result from encoding of relations between stimuli in the environment (stimulus-stimulus associations, typical for first-order fear) but is not needed to consolidate fears that form when environmental stimuli associate directly with fear responses emitted by the animal (stimulus-response associations, typical for second-order fear). Thus, the substrates of Pavlovian fear conditioning in the BLA depend on the way that the environment impinges upon the animal. This is discussed with respect to theories of amygdala function in Pavlovian fear conditioning, and ways in which stimulus-response associations might be consolidated in the brain.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Aprendizagem , Feminino , Ratos , Masculino , Animais , Tonsila do Cerebelo/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia
3.
J Neurosci ; 43(16): 2934-2949, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36927572

RESUMO

This study examined the effect of danger on consolidation of neutral information in two regions of the rat (male and female) medial temporal lobe: the perirhinal cortex (PRh) and basolateral amygdala complex (BLA). The neutral information was the association that forms between an auditory stimulus and a visual stimulus (labeled S2 and S1) across their pairings in sensory preconditioning. We show that, when the sensory preconditioning session is followed by a shocked context exposure, the danger shifts consolidation of the S2-S1 association from the PRh to the BLA; and does so by interacting with processes involved in encoding of the S2-S1 pairings. Specifically, we show that the initial S2-S1 pairing in sensory preconditioning is encoded in the BLA and not the PRh; whereas the later S2-S1 pairings are encoded in the PRh and not the BLA. When the sensory preconditioning session is followed by a context alone exposure, the BLA-dependent trace of the early S2-S1 pairings decays and the PRh-dependent trace of the later S2-S1 pairings is consolidated in memory. However, when the sensory preconditioning session is followed by a shocked context exposure, the PRh-dependent trace of the later S2-S1 pairings is suppressed and the BLA-dependent trace of the initial S2-S1 pairing is consolidated in memory. These findings are discussed with respect to mutually inhibitory interactions between the PRh and BLA, and the way that these regions support memory in other protocols, including recognition memory in people.SIGNIFICANCE STATEMENT The perirhinal cortex (PRh) and basolateral amygdala complex (BLA) process the pairings of neutral auditory and visual stimuli in sensory preconditioning. The involvement of each region in this processing is determined by the novelty/familiarity of the stimuli as well as events that occur immediately after the preconditioning session. Novel stimuli are represented in the BLA; however, as these stimuli are repeatedly presented without consequence, they come to be represented in the PRh. Whether the BLA- or PRh-dependent representation is consolidated in memory depends on what happens next. When nothing of significance occurs, the PRh-dependent representation is consolidated and the BLA-dependent representation decays; but when danger is encountered, the PRh-dependent representation is inhibited and the BLA-dependent representation is selected for consolidation.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Medo , Feminino , Ratos , Masculino , Animais , Condicionamento Psicológico , Lobo Temporal , Reconhecimento Psicológico
4.
J Neurosci ; 43(39): 6679-6696, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37607821

RESUMO

It is widely accepted that Pavlovian fear conditioning requires activation of NMDA receptors (NMDARs) in the basolateral amygdala complex (BLA). However, it was recently shown that activation of NMDAR in the BLA is only required for fear conditioning when danger occurs unexpectedly; it is not required for fear conditioning when danger occurs as expected. This study tested the hypothesis that NMDARs in the BLA are engaged for Pavlovian fear conditioning when an animal's predictions regarding danger are in error. In each experiment, rats (females in Experiment 1 and males in Experiments 2-5) were conditioned to fear one stimulus, S1, when it was paired with foot-shock (S1→shock), and 48 h later, a second stimulus, S2, when it was presented in sequence with the already-conditioned S1 and foot-shock (S2→S1→shock). Conditioning to S2 occurred under a BLA infusion of the NMDAR antagonist, D-AP5 or vehicle. The subsequent tests of freezing to S2 alone and S1 alone revealed that the antagonist had no effect on conditioning to S2 when the shock occurred exactly as predicted by the S1, but disrupted this conditioning when the shock occurred earlier/later than predicted by S1, or at a stronger/weaker intensity. These results imply that errors in the timing or intensity of a predicted foot-shock engage NMDARs in the BLA for Pavlovian fear conditioning. They are discussed in relation to theories which propose a role for prediction error in determining how experiences are organized in memory and how activation of NMDAR in the BLA might contribute to this organization.SIGNIFICANCE STATEMENT This study is significant in showing that prediction error determines how a new experience is encoded with respect to a past experience and, thereby, whether NMDA receptors (NMDARs) in the basolateral amygdala complex (BLA) encode the new experience. When prediction error is small (e.g., danger occurs as and when expected), the new experience is encoded together with a past experience as part of the same "mental model," and NMDAR activation in the BLA is not needed for this encoding. By contrast, when prediction error is large (e.g., danger occurs at an unexpected intensity or time), the new experience is encoded separately from the past experience as part of a new mental model, and NMDAR activation in the BLA is needed for this encoding.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Masculino , Ratos , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Tonsila do Cerebelo/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia
5.
Neurobiol Learn Mem ; 207: 107879, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081536

RESUMO

This series of experiments examined the effects of extinction and an explicitly unpaired treatment on the ability of a conditioned stimulus (CS) to function as a reinforcer. Rats were trained to lever press for food, exposed to pairings of a noise CS and food, and, finally, tested for their willingness to lever press for the CS in the absence of the food. Experiment 1 provided a demonstration of conditioned reinforcement (using controls that were only exposed to unpaired presentations of the CS and food) and showed that it was equivalent after one or four sessions of CS-food pairings. Experiments 2 and 3 showed that, after one session of CS-food pairings, repeated presentations of the CS alone reduced its reinforcing properties; but after four sessions of CS-food pairings, repeated presentations of the CS alone had no effect on these properties. Experiment 4 showed that, after four sessions of CS-food pairings, explicitly unpaired presentations of the CS and food completely undermined conditioned reinforcement. Finally, Experiment 5 provided within-experiment evidence that, after four sessions of CS-food pairings, the reinforcing properties of the CS were disrupted by explicitly unpaired presentations of the CS and food but spared by repeated presentations of the CS alone. Together, these findings indicate that the effectiveness of extinction in undermining the reinforcing properties of a CS depends on its level of conditioning; and that, where extinction fails to disrupt these properties, they are successfully undermined by an explicitly unpaired treatment. They are discussed with respect to findings in the literature on Pavlovian-to-instrumental transfer; and the Rescorla-Wagner model, which anticipates that an explicitly unpaired treatment will be more effective than extinction in reversing the effects of conditioning.


Assuntos
Condicionamento Operante , Reforço Psicológico , Ratos , Animais , Condicionamento Clássico , Extinção Psicológica
6.
Cereb Cortex ; 33(5): 1843-1855, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35524718

RESUMO

How do animals process experiences that provide contradictory information? The present study addressed this question using second-order fear conditioning in rats. In second-order conditioning, rats are conditioned to fear a stimulus, S1, through its pairings with foot-shock (stage 1); and some days later, a second stimulus, S2, through its pairings with the already-conditioned S1 (stage 2). However, as foot-shock is never presented during conditioning to S2, we hypothesized that S2 simultaneously encodes 2 contradictory associations: one that drives fear to S2 (S2-danger) and another that reflects the absence of the expected unconditioned stimulus and partially masks that fear (e.g. S2-safety). We tested this hypothesis by manipulating the substrates of danger and safety learning in the brain (using a chemogenetic approach) and assessing the consequences for second-order fear to S2. Critically, silencing activity in the basolateral amygdala (important for danger learning) reduced fear to S2, whereas silencing activity in the infralimbic cortex (important for safety learning) enhanced fear to S2. These bidirectional changes are consistent with our hypothesis that second-order fear conditioning involves the formation of competing S2-danger and S2-safety associations. More generally, they show that a single set of experiences can produce contradictory associations and that the brain resolves the contradiction by encoding these associations in distinct brain regions.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Condicionamento Clássico , Ratos , Animais , Aprendizagem , Medo , Condicionamento Operante
7.
J Neurosci ; 42(21): 4360-4379, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35410880

RESUMO

It is widely accepted that activation of NMDA receptors (NMDAR) is necessary for the formation of fear memories in the basolateral amygdala complex (BLA). This acceptance is based on findings that blockade of NMDAR in the BLA disrupts Pavlovian fear conditioning in rodents when initially innocuous stimuli are paired with aversive and unexpected events (surprising foot shock). The present study challenges this acceptance by showing that the involvement of NMDAR in Pavlovian fear conditioning is determined by prediction errors in relation to aversive events. In the initial experiments, male rats received a BLA infusion of the NMDAR antagonist, D-AP5 and were then exposed to pairings of a novel target stimulus and foot shock. This infusion disrupted acquisition of fear to the target when the shock was surprising (experiments 1a, 1b, 2a, 2b, 3a, and 3b) but spared fear to the target when the shock was expected based on the context, time and other stimuli that were present (experiments 1a and 1b). Under the latter circumstances, fear to the target required activation of calcium-permeable AMPAR (CP-AMPA; experiments 4a, 4b, and 4c), which, using electrophysiology, were shown to regulate the activity of interneurons in the BLA (experiment 5). Thus, NMDAR activation is not required for fear conditioning when danger occurs as expected given the context, time and stimuli present, but is required for fear conditioning when danger occurs unexpectedly. These findings are related to current theories of NMDAR function and ways that prediction errors might influence the substrates of fear memory formation in the BLA.SIGNIFICANCE STATEMENT It is widely accepted that NMDA receptors (NMDAR) in the basolateral amygdala complex (BLA) are activated by pairings of a conditioned stimulus (CS) and an aversive unconditioned (US) stimulus, leading to the synaptic changes that underlie formation of a CS-US association. The present findings are significant in showing that this theory is incomplete. When the aversive US is unexpected, animals encode all features of the situation (context, time and stimuli present) as a new fear/threat memory, which is regulated by NMDAR in the BLA. However, when the US is expected based on the context, time and stimuli present, the new fear memory is assimilated into networks that represent those features, which occurs independently of NMDAR activation in the BLA.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Tonsila do Cerebelo/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Masculino , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo
8.
Learn Mem ; 28(4): 114-125, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33723031

RESUMO

Four experiments examined the effects of a dangerous context and a systemic epinephrine injection on sensory preconditioning in rats. In each experiment, rats were exposed to presentations of a tone and light in stage 1, light-shock pairings in stage 2, and test presentations of the tone alone and light alone in stage 3. Presentations of the tone and light in stage 1 occurred in either a safe or a previously shocked context, and/or under a systemic injection of epinephrine. Experiment 1 showed that a trace interval of 20 sec between presentations of the tone and light produced sensory preconditioning of the tone in a previously shocked context but not in a safe context, while experiment 2 provided evidence that this trace preconditioning was associative, due to the formation of a tone-light association. Experiment 3 showed that, in a safe context, exposure to the trace protocol under the influence of an epinephrine injection also produced sensory preconditioning of the tone, while experiment 4 provided evidence that a shocked context and an epinephrine injection have additive effects on trace preconditioning. These findings are discussed in relation to theories of trace conditioning. They suggest that the release of epinephrine by danger enhances attention and/or working memory processes, and thereby associative formation across a trace interval.


Assuntos
Aprendizagem por Associação/efeitos dos fármacos , Aprendizagem por Associação/fisiologia , Comportamento Animal/fisiologia , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Epinefrina/farmacologia , Epinefrina/fisiologia , Medo/fisiologia , Animais , Percepção Auditiva/fisiologia , Comportamento Animal/efeitos dos fármacos , Eletrochoque , Epinefrina/administração & dosagem , Medo/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Segurança , Percepção Visual/fisiologia
9.
Neurobiol Learn Mem ; 183: 107485, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216787

RESUMO

Second-order fear conditioning has been demonstrated in protocols using discrete and simple stimuli, and much is now known about its behavioral and neural characteristics. In contrast, the mechanisms of second-order conditioning to more complex stimuli, such as contexts, are unknown. To address this gap in our knowledge, we conducted a series of experiments to investigate the neural and behavioral characteristics of second-order context fear conditioning in rats. We found that rats acquire fear to a context in which a first-order conditioned stimulus is presented (Experiment 1); neuronal activity in the basolateral amygdala (BLA) is required for the acquisition (Experiment 2) and extinction (Experiment 3) of second-order context fear; second-order context fear can be reduced by extinction of its first-order conditioned stimulus associate (Experiment 4); and that second-order fear reduced in this way is restored when fear of the first-order conditioned stimulus spontaneously recovers or is reconditioned (Experiment 5). Thus, second-order context fear requires neuronal activity in the BLA, and once established, tracks the level of fear to its first-order conditioned stimulus-associate. These results are discussed with respect to the substrates of second-order fear conditioning in other protocols, and the role of the amygdala in different forms of conditioning.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Medo , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Feminino , Agonistas de Receptores de GABA-A/farmacologia , Muscimol/farmacologia , Ratos
10.
J Neurosci ; 39(37): 7357-7368, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31341027

RESUMO

Consolidation of conditioned fear to a stimulus (S1) paired with shock requires de novo protein synthesis in the basolateral amygdala complex (BLA), whereas consolidation of conditioned fear to a stimulus (S2) paired with the fear-eliciting S1 requires DNA methylation but not de novo protein synthesis in the BLA. The present experiments merged these protocols by exposing rats to pairings of a serial S2-S1 compound and shock to examine if/when protein synthesis in the BLA is required to consolidate fear to S2. Rats received a BLA infusion of the protein synthesis inhibitor, cycloheximide, immediately after the S2-S1-shock session and were subsequently tested with S2. The infusion disrupted consolidation of fear to S2 when there had been no prior training of S1 (Experiment 1), the prior training had consisted of unpaired presentations of S1 and shock (Experiment 4), or in pairings of S1 and sucrose (Experiment 5). Consolidation of fear to S2 was unaffected by the infusion of cycloheximide but was disrupted by the DNA methyltransferase inhibitor, 5-AZA, when S1 had been previously fear-conditioned (Experiments 2a, 2b, and 3). These findings imply that what has already been learned about S1 determines the BLA processes that consolidate fear to S2. The already-fear-conditioned S1 blocks the S2-shock association that otherwise forms (and whose consolidation requires de novo protein synthesis in the BLA) while simultaneously acting as a learned source of danger for its S2 associate (whose consolidation requires DNA methylation but not de novo protein synthesis in the BLA).SIGNIFICANCE STATEMENT Protein synthesis is widely thought to be crucial for consolidating new learning into stable memories, including the consolidation of conditioned fear memories in the basolateral amygdala complex (BLA). However, our data provide clear evidence that the requirement for protein synthesis to consolidate conditioned fear in the BLA depends on an animal's previous training history, and the type of learning that is consolidated. Further, within the BLA, our data show that DNA methylation, and not protein synthesis, is necessary to consolidate higher-order conditioned fear, indicating that epigenetic mechanisms may provide a more fundamental mnemonic substrate.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Consolidação da Memória/fisiologia , Biossíntese de Proteínas/fisiologia , Estimulação Acústica/métodos , Animais , Medo/psicologia , Masculino , Estimulação Luminosa/métodos , Ratos , Ratos Sprague-Dawley
11.
J Neurosci ; 38(8): 1926-1941, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29363582

RESUMO

Consolidation of newly formed fear memories requires a series of molecular events within the basolateral complex of the amygdala (BLA). Once consolidated, new information can be assimilated into these established associative networks to form higher-order associations. Much is known about the molecular events involved in consolidating newly acquired fear memories but little is known about the events that consolidate a secondary fear memory. Here, we show that, within the male rat BLA, DNA methylation and gene transcription are crucial for consolidating both the primary and secondary fear memories. We also show that consolidation of the primary, but not the secondary, fear memory requires de novo protein synthesis in the BLA. These findings show that consolidation of a fear memory and its updating to incorporate new information recruit distinct processes in the BLA, and suggest that DNA methylation in the BLA is fundamental to consolidation of both types of conditioned fear.SIGNIFICANCE STATEMENT Our data provide clear evidence that a different set of mechanisms mediate consolidation of learning about cues that signal learned sources of danger (i.e., second-order conditioned fear) compared with those involved in consolidation of learning about cues that signal innate sources of danger (i.e., first-order conditioned fear). These findings carry important implications because second-order learning could underlie aberrant fear-related behaviors (e.g., in anxiety disorders) as a consequence of neutral secondary cues being integrated into associative fear networks established through first-order pairings, and thereby becoming potent conditioned reinforcers and predictors of fear. Therefore, our data suggest that targeting such second-order conditioned triggers of fear may require pharmacological intervention different to that typically used for first-order conditioned cues.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Medo/fisiologia , Consolidação da Memória/fisiologia , Animais , Condicionamento Clássico , Sinais (Psicologia) , Metilação de DNA/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Transcrição Gênica/fisiologia
12.
Chembiochem ; 20(10): 1282-1291, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30589191

RESUMO

Mycobacteria and related organisms in the Corynebacterineae suborder are characterized by a distinctive outer membrane referred to as the mycomembrane. Biosynthesis of the mycomembrane occurs through an essential process called mycoloylation, which involves antigen 85 (Ag85)-catalyzed transfer of mycolic acids from the mycoloyl donor trehalose monomycolate (TMM) to acceptor carbohydrates and, in some organisms, proteins. We recently described an alkyne-modified TMM analogue (O-AlkTMM-C7) which, in conjunction with click chemistry, acted as a chemical reporter for mycoloylation in intact cells and allowed metabolic labeling of mycoloylated components of the mycomembrane. Here, we describe the synthesis and evaluation of a toolbox of TMM-based reporters bearing alkyne, azide, trans-cyclooctene, and fluorescent tags. These compounds gave further insight into the substrate tolerance of mycoloyltransferases (e.g., Ag85s) in a cellular context and they provide significantly expanded experimental versatility by allowing one- or two-step cell labeling, live cell labeling, and rapid cell labeling via tetrazine ligation. Such capabilities will facilitate research on mycomembrane composition, biosynthesis, and dynamics. Moreover, because TMM is exclusively metabolized by Corynebacterineae, the described probes may be valuable for the specific detection and cell-surface engineering of Mycobacterium tuberculosis and related pathogens. We also performed experiments to establish the dependence of probe incorporation on mycoloyltransferase activity, results from which suggested that cellular labeling is a function not only of metabolic incorporation (and likely removal) pathway(s), but also accessibility across the envelope. Thus, whole-cell labeling experiments with TMM reporters should be carefully designed and interpreted when envelope permeability may be compromised. On the other hand, this property of TMM reporters can potentially be exploited as a convenient way to probe changes in envelope integrity and permeability, facilitating drug development studies.


Assuntos
Membrana Celular/química , Fatores Corda/química , Corynebacterium/química , Aciltransferases/metabolismo , Alcinos/síntese química , Alcinos/química , Alcinos/metabolismo , Azidas/síntese química , Azidas/química , Azidas/metabolismo , Bacillus subtilis/química , Engenharia Celular/métodos , Membrana Celular/metabolismo , Química Click , Fatores Corda/síntese química , Fatores Corda/metabolismo , Escherichia coli/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Estrutura Molecular , Mycobacterium smegmatis/química , Mycobacterium tuberculosis/química
13.
Clin Genet ; 96(3): 199-206, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31038196

RESUMO

Autism spectrum disorder (ASD) is a highly heterogeneous genetic disorder with strong evidence of ASD-association currently available only for a small number of genes. This makes it challenging to identify the underlying genetic cause in many cases of ASD, and there is a continuing need for further discovery efforts. We sequenced whole genomes of 119 deeply phenotyped ASD probands in order to identify likely pathogenic variants. We prioritized variants found in each subject by predicted damage, population frequency, literature evidence, and phenotype concordance. We used Sanger sequencing to determine the inheritance status of high-priority variants where possible. We report five novel de novo damaging variants as well as several likely damaging variants of unknown inheritance; these include two novel de novo variants in the well-established ASD gene SCN2A. The availability of rich phenotypic information and its concordance with the literature allowed us to increase our confidence in pathogenicity of discovered variants, especially in probands without parental DNA. Our results contribute to the documentation of potential pathogenic variants and their associated phenotypes in individuals with ASD.


Assuntos
Transtorno do Espectro Autista/genética , Predisposição Genética para Doença , Variação Genética , Sequenciamento Completo do Genoma , Alelos , Substituição de Aminoácidos , Transtorno do Espectro Autista/diagnóstico , Colúmbia Britânica , Estudos de Coortes , Variações do Número de Cópias de DNA , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único
14.
Addict Biol ; 24(5): 849-859, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-29920857

RESUMO

Restricting when and where smoking can occur is a major focus of public health policies in Western countries. In conjunction with increased taxation, these approaches have contributed to a reduction in smoking uptake among adolescents, yet the consequences for established smokers are less clear. In order to further explore this relationship, we developed a novel animal model of restricted nicotine self-administration. Rats were trained to choose between three doses of nicotine (15, 30 and 60 µg/kg/infusion) under conditions where nicotine was (1) freely available at a low cost (20-second post-infusion time-out, fixed-ratio 1 [FR1]), (2) available under restricted access at a low cost (300-second post-infusion time-out, FR1), or (3) freely available at a high cost (20-second post-infusion time-out, FR5). We demonstrate that as access to nicotine is restricted or when cost increases, rats compensate for these changes by increasing their intake of the highest dose of nicotine available. This preference was impervious to treatment with the smoking cessation medication varenicline, but was reduced when the cost of the highest dose only was increased, or when nicotine was again made freely available at a low cost. These results provide the first evidence in rats that nicotine availability and cost influence nicotine choice independently of variations in nicotine and context exposure. They imply that established smokers may compensate for changes in the availability and cost of tobacco by increasing their rate of smoking when they are free to do so.


Assuntos
Comportamento Animal/fisiologia , Comportamento de Escolha/fisiologia , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Autoadministração , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento de Escolha/efeitos dos fármacos , Infusões Intravenosas , Política Pública , Ratos , Política Antifumo , Agentes de Cessação do Hábito de Fumar/farmacologia , Produtos do Tabaco , Vareniclina/farmacologia
15.
Neurobiol Learn Mem ; 150: 64-74, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29518495

RESUMO

Evidence indicates that the infralimbic cortex (IL) encodes and retrieves the inhibitory memory produced by fear extinction. Recently, we have shown that the IL is also involved in the inhibitory memory generated by stimulus pre-exposure that causes latent inhibition. These results are surprising because a stimulus undergoing fear extinction carries aversive motivational value, whereas a pre-exposed stimulus is neutral. The present experiments tested the hypothesis that the IL encodes inhibition irrespective of the motivational information about the stimulus. Using rats, we first confirmed that IL activity during stimulus pre-exposure is required for latent inhibition. Then, we found that pharmacological stimulation of the IL facilitated aversive extinction to a stimulus that had been trained and extinguished as an appetitive stimulus. This facilitation was stimulus specific and required appetitive extinction. The same facilitation was found when appetitive extinction was replaced with random presentations of the stimulus and an appetitive outcome. Together, these findings indicate that non-reinforced stimulus presentations establish an inhibitory memory that is reactivated and strengthened in the IL during subsequent aversive extinction. This is consistent with the view that the IL encodes inhibition irrespective of motivational value, suggesting that this brain region plays a general role in inhibitory learning.


Assuntos
Córtex Cerebral/fisiologia , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Motivação/fisiologia , Animais , Córtex Cerebral/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Agonistas de Receptores de GABA-A/farmacologia , Masculino , Motivação/efeitos dos fármacos , Muscimol/farmacologia , Ratos , Ratos Sprague-Dawley
16.
Neurobiol Learn Mem ; 156: 53-59, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30359728

RESUMO

People and animals sometimes associate events that never occurred together. These false memories can have disastrous consequences, yet little is known about the conditions under which they form. In four experiments, we investigated how rats learn to fear a context in which they have never experienced danger (i.e., how they form a false context fear memory). In each experiment, rats were pre-exposed to a context on day 1, shocked in a similar-but-different context on day 2, and tested in the pre-exposed or explicitly-conditioned context on day 3. The results revealed that: (1) the true memory of the explicitly-conditioned context and false memory of the pre-exposed context develop simultaneously and independently; and (2) the conditions of pre-exposure on day 1 and time of shock exposure on day 2 interact to determine the strength of the false memory. These findings are anticipated by a recent computational model, the Bayesian Context Fear Algorithm/Automaton (BACON; Krasne, Cushman, & Fanselow, 2015). They are discussed in relation to this model and more general theories of context learning.


Assuntos
Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Rememoração Mental/fisiologia , Animais , Teorema de Bayes , Masculino , Modelos Biológicos , Ratos , Ratos Sprague-Dawley
17.
Neurobiol Learn Mem ; 153(Pt B): 153-165, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29656024

RESUMO

The present series of experiments pursued our recent findings that consolidation of a second-order fear memory requires neuronal activity, but not de novo protein synthesis, in the basolateral amygdala complex (BLA). It used a modified second-order conditioning protocol in which rats were exposed to S1-shock pairings in stage 1 and pairings of the serial S2-S1 compound and shock in stage 2. Experiment 1 showed that responding (freezing) to S2 in this protocol is conditional on its compounding with S1 in stage 2 (Experiment 1), and therefore, the result of associative formation. The remaining experiments then showed that the protein synthesis requirement for consolidation of new learning about S2 varied with the training afforded S1. When S1 was trained in stage 1 and present in stage 2, consolidation of the new S2 fear memory was unaffected by pre- or post-stage 2 infusions of the protein synthesis inhibitor, cycloheximide, into the BLA (Experiments 2 and 5). This result was observed independently of the number of S1-shock pairings in stage 1 (even a single pairing produced the result), and alongside demonstrations that cycloheximide infusions disrupt consolidation of a first-order fear memory (Experiments 2 and 5). However, when S1 was not conditioned in stage 1 (Experiment 3) or was omitted from conditioning in stage 2 (Experiment 4), consolidation of the new S2 fear memory was disrupted by post-stage 2 cycloheximide infusions into the BLA. These results were taken to imply that the consolidation of a higher-order fear memory exploits molecular events associated with consolidation of a reactivated first-order fear memory; hence it occurs independently of de novo protein synthesis in the BLA. Alternatively, the nature of the association formed in higher-order conditioning may be such as to not require de novo protein synthesis for its consolidation.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Consolidação da Memória/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Cicloeximida/farmacologia , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Medo/efeitos dos fármacos , Masculino , Consolidação da Memória/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Ratos , Ratos Sprague-Dawley
18.
Learn Mem ; 24(9): 440-448, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28814470

RESUMO

Four experiments used a sensory preconditioning protocol to examine how a dangerous context influences learning about innocuous events. In Experiments 1, 2, and 3, rats were exposed to presentations of a tone followed immediately or 20-sec later by presentations of a light. These tone-light pairings occurred in a context that was either familiar and safe, or equally familiar but dangerous, that is, it was a context in which rats had been exposed to footshock. Rats were next exposed to parings of the light and shock and then tested with the tone (and light). The experiments showed that a dangerous context permits formation of a tone-light association under circumstances that preclude formation of that same association in a safe context (Experiments 1 and 2), and that this facilitative effect on associative formation depends on the content being currently dangerous rather than having been dangerous in the past (Experiment 3). Experiment 4 examined whether a dangerous context facilitates discrimination between two innocuous events. In a safe or dangerous context, rats were exposed to a tone that signaled the light and then to a white noise presented alone. Subsequent to conditioning of the light, the tests revealed that rats that had been exposed to these tone-light and white noise alone presentations in a dangerous context froze to the tone but not to the noise, whereas those exposed in a safe context froze to both the tone and the white noise. The results were related to previous evidence that the amygdala is critical for processing information about innocuous stimuli in a dangerous but not a safe context. They were attributed to an amygdala-based enhancement of arousal and/or attention in a dangerous context, hence the facilitation of associative formation and enhanced discriminability in this context.


Assuntos
Aprendizagem da Esquiva/fisiologia , Condicionamento Psicológico/fisiologia , Discriminação Psicológica/fisiologia , Medo , Estimulação Acústica/efeitos adversos , Animais , Eletrochoque/efeitos adversos , Extinção Psicológica/fisiologia , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
19.
Neuroimage ; 153: 122-130, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28377211

RESUMO

Myelin content is an important marker for neuropathology and MRI generated myelin water fraction (MWF) has been shown to correlate well with myelin content. However, because MWF is based on the amount of signal from myelin water, that is, the water trapped between the myelin lipid bilayers, the reading may depend heavily on myelin morphology. This is of special concern when there is a mix of intact myelin and myelin debris, as in the case of injury. To investigate what MWF measures in the presence of debris, we compared MWF to transmission electron microscopy (TEM) derived myelin fraction that measures the amount of compact appearing myelin. A rat spinal cord injury model was used with time points at normal (normal myelin), 3 weeks post-injury (myelin debris), and 8 weeks post-injury (myelin debris, partially cleared). The myelin period between normal and 3 or 8 weeks post-injury cords did not differ significantly, suggesting that as long as the bilayer structure is intact, myelin debris has the same water content as intact myelin. The MWF also correlated strongly with the TEM-derived myelin fraction, suggesting that MWF measures the amount of compact appearing myelin in both intact myelin and myelin debris. From the TEM images, it appears that as myelin degenerates, it tends to form large watery spaces within the myelin sheaths that are not classified as myelin water. The results presented in this study improve our understanding and allows for better interpretation of MWF in the presence of myelin debris.


Assuntos
Bainha de Mielina/química , Bainha de Mielina/ultraestrutura , Traumatismos da Medula Espinal/patologia , Animais , Modelos Animais de Doenças , Líquido Extracelular/química , Imageamento por Ressonância Magnética , Masculino , Microscopia Eletrônica de Transmissão , Ratos Sprague-Dawley , Água/análise
20.
Addict Biol ; 22(2): 400-410, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26626055

RESUMO

An array of pharmacological and environmental factors influence the development and maintenance of tobacco addiction. The nature of these influences likely changes across the course of an extended smoking history, during which time drug seeking can become involuntary and uncontrolled. The present study used an animal model to examine the factors that drive nicotine-seeking behavior after either brief (10 days) or extended (40 days) self-administration training. In Experiment 1, extended training increased rats' sensitivity to nicotine, indicated by a leftward shift in the dose-response curve, and their motivation to work for nicotine, indicated by an increase in the break point achieved under a progressive ratio schedule. In Experiment 2, extended training imbued the nicotine-paired cue with the capacity to maintain responding to the same high level as nicotine itself. However, Experiment 3 showed that the mechanisms involved in responding for nicotine or a nicotine-paired cue are dissociable, as treatment with the partial nicotine receptor agonist, varenicline, suppressed responding for nicotine but potentiated responding for the nicotine-paired cue. Hence, across extended nicotine self-administration, pharmacological and environmental influences over nicotine seeking increase such that nicotine seeking is controlled by multiple sources, and therefore highly resistant to change.


Assuntos
Comportamento Animal/efeitos dos fármacos , Comportamento de Procura de Droga/efeitos dos fármacos , Motivação/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Reforço Psicológico , Animais , Sinais (Psicologia) , Masculino , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Autoadministração , Tabagismo , Vareniclina/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa