Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Bioinformatics ; 37(22): 4209-4215, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34048539

RESUMO

MOTIVATION: Cardiomyocytes derived from stem cells are closely followed, notably since the discovery in 2007 of human induced pluripotent stem cells (hiPSC). Cardiomyocytes (hiPSC-CM) derived from hiPSC are indeed more and more used to study specific cardiac diseases as well as for developing novel applications such as drug safety experiments. Robust dedicated tools to characterize hiPSC-CM are now required. The hiPSC-CM morphology constitutes an important parameter since these cells do not demonstrate the expected rod shape, characteristic of native human cardiomyocytes. Similarly, the presence, the density and the organization of contractile structures would be a valuable parameter to study. Precise measurements of such characteristics would be useful in many situations: for describing pathological conditions, for pharmacological screens or even for studies focused on the hiPSC-CM maturation process. RESULTS: For this purpose, we developed a MATLAB based image analysis toolbox, which gives accurate values for cellular morphology parameters as well as for the contractile cell organization. AVAILABILITY AND IMPLEMENTATION: To demonstrate the power of this automated image analysis, we used a commercial maturation medium intended to promote the maturation status of hiPSC-CM, and compare the parameters with the ones obtained with standard culture medium, and with freshly dissociated mouse cardiomyocytes. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Animais , Camundongos , Células Cultivadas
2.
Eur Phys J E Soft Matter ; 45(5): 44, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35532848

RESUMO

We present an in-depth investigation of a fully automated Fourier-based analysis to determine the cell size and the width of its distribution in 3D biological tissues. The results are thoroughly tested using generated images, and we offer valuable criteria for image acquisition settings to optimize accuracy. We demonstrate that the most important parameter is the number of cells in the field of view, and we show that accurate measurements can already be made on volume only containing [Formula: see text] cells. The resolution in z is also not so important, and a reduced number of in-depth images, of order of one per cell, already provides a measure of the mean cell size with less than 5% error. The technique thus appears to be a very promising tool for very fast live local volume cell measurement in 3D tissues in vivo while strongly limiting photobleaching and phototoxicity issues.


Assuntos
Processamento de Imagem Assistida por Computador , Tamanho Celular , Análise de Fourier , Processamento de Imagem Assistida por Computador/métodos
3.
Lab Chip ; 24(6): 1573-1585, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38305798

RESUMO

Despite recent advances in artificial cilia technologies, the application of metachrony, which is the collective wavelike motion by cilia moving out-of-phase, has been severely hampered by difficulties in controlling closely packed artificial cilia at micrometer length scales. Moreover, there has been no direct experimental proof yet that a metachronal wave in combination with fully reciprocal ciliary motion can generate significant microfluidic flow on a micrometer scale as theoretically predicted. In this study, using an in-house developed precise micro-molding technique, we have fabricated closely packed magnetic artificial cilia that can generate well-controlled metachronal waves. We studied the effect of pure metachrony on fluid flow by excluding all symmetry-breaking ciliary features. Experimental and simulation results prove that net fluid transport can be generated by metachronal motion alone, and the effectiveness is strongly dependent on cilia spacing. This technique not only offers a biomimetic experimental platform to better understand the mechanisms underlying metachrony, it also opens new pathways towards advanced industrial applications.


Assuntos
Cílios , Magnetismo , Movimento (Física) , Simulação por Computador , Fenômenos Magnéticos
4.
PLoS Comput Biol ; 8(3): e1002392, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22438794

RESUMO

We observe and quantify wave-like characteristics of amoeboid migration. Using the amoeba Dictyostelium discoideum, a model system for the study of chemotaxis, we demonstrate that cell shape changes in a wave-like manner. Cells have regions of high boundary curvature that propagate from the leading edge toward the back, usually along alternating sides of the cell. Curvature waves are easily seen in cells that do not adhere to a surface, such as cells that are electrostatically repelled from surfaces or cells that extend over the edge of micro-fabricated cliffs. Without surface contact, curvature waves travel from the leading edge to the back of a cell at -35 µm/min. Non-adherent myosin II null cells do not exhibit these curvature waves. At the leading edge of adherent cells, curvature waves are associated with protrusive activity. Like regions of high curvature, protrusive activity travels along the boundary in a wave-like manner. Upon contact with a surface, the protrusions stop moving relative to the surface, and the boundary shape thus reflects the history of protrusive motion. The wave-like character of protrusions provides a plausible mechanism for the zig-zagging of pseudopods and for the ability of cells both to swim in viscous fluids and to navigate complex three dimensional topography.


Assuntos
Membrana Celular/fisiologia , Tamanho Celular , Quimiotaxia/fisiologia , Dictyostelium/fisiologia , Fluidez de Membrana/fisiologia , Modelos Biológicos , Simulação por Computador
5.
Artigo em Inglês | MEDLINE | ID: mdl-25353784

RESUMO

A prefluidized sand bed consisting of fine particles compactifies when it is subjected to a shock. We observe that the response depends on both the shock strength and the ambient pressure, where, counterintuitively, at high ambient pressure the compaction is larger, which we connect to a decrease of the static friction inside the bed. We find that the interstitial air is trapped inside the bed during and long after compaction. We deduce this from measuring the pressure changes above and below the bed: The top pressure decreases abruptly, on the time scale of the compaction, whereas that below the bed slowly rises to a maximum. Subsequently, both gently relax to ambient values. We formulate a one-dimensional diffusion model that uses only the change in bed height and the ambient pressure as an input, and we show that it leads to a fully quantitative understanding of the measured pressure variations.


Assuntos
Coloides/química , Modelos Químicos , Reologia/métodos , Solo/química , Ar , Simulação por Computador , Fricção , Pressão , Resistência ao Cisalhamento
6.
Artigo em Inglês | MEDLINE | ID: mdl-25615033

RESUMO

We describe direct measurements of the acceleration of an object impacting on a loosely packed granular bed under various pressures, using an instrumented sphere. The sphere acts as a noninvasive probe that measures and continuously transmits the acceleration as it penetrates into the sand, using a radio signal. The time-resolved acceleration of the sphere reveals the detailed dynamics during the impact that cannot be resolved from the position information alone. Because of the unobstructed penetration, we see a downward acceleration of the sphere at the moment the air cavity collapses. The compressibility of the sand bed is observed through the oscillatory behavior of the acceleration curve for various ambient pressures; it shows the influence of interstitial air on the compaction of the sand as a function of time.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa