RESUMO
In non-small cell lung cancer, sensitizing mutations in epidermal growth factor receptor (EGFR) or cMET amplification serve as good biomarkers for targeted therapies against EGFR or cMET, respectively. Here we aimed to determine how this different genetic background would affect the interaction between the EGFR-inhibitor erlotinib and the cMET-inhibitor crizotinib. To unravel the mechanism of synergy we investigated the effect of the drugs on various parameters, including cell cycle arrest, migration, protein phosphorylation, kinase activity, the expression of drug efflux pumps, intracellular drug concentrations, and live-cell microscopy. We observed additive effects in EBC-1, H1975, and HCC827, and a strong synergism in the HCC827GR5 cell line. This cell line is a clone of the HCC827 cells that harbor an EGFR exon 19 deletion and has been made resistant to the EGFR-inhibitor gefitinib, resulting in cMET amplification. Remarkably, the intracellular concentration of crizotinib was significantly higher in HCC827GR5 compared to the parental HCC827 cell line. Furthermore, live-cell microscopy with a pH-sensitive probe showed a differential reaction of the pH in the cytoplasm and the lysosomes after drug treatment in the HCC827GR5 in comparison with the HCC827 cells. This change in pH could influence the process of lysosomal sequestration of drugs. These results led us to the conclusion that lysosomal sequestration is involved in the strong synergistic reaction of the HCC827GR5 cell line to crizotinib-erlotinib combination. This finding warrants future clinical studies to evaluate whether genetic background and lysosomal sequestration could guide tailored therapeutic interventions.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Lisossomos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/genética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Crizotinibe/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Cloridrato de Erlotinib/farmacologia , Gefitinibe/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação/genética , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidoresRESUMO
(1) Background: RX-3117 (fluorocyclopentenyl-cytosine) is a cytidine analog that inhibits DNA methyltransferase 1 (DNMT1). We investigated the mechanism and potential of RX-3117 as a demethylating agent in several in vitro models. (2) Methods: we used western blotting to measure expression of several proteins known to be down-regulated by DNA methylation: O6-methylguanine-DNA methyltransferase (MGMT) and the tumor-suppressor genes, p16 and E-cadherin. Transport of methotrexate (MTX) mediated by the proton-coupled folate transporter (PCFT) was used as a functional assay. (3) Results: RX-3117 treatment decreased total DNA-cytosine-methylation in A549 non-small cell lung cancer (NSCLC) cells, and induced protein expression of MGMT, p16 and E-cadherin in A549 and SW1573 NSCLC cells. Leukemic CCRF-CEM cells and the MTX-resistant variant (CEM/MTX, with a deficient reduced folate carrier) have a very low expression of PCFT due to promoter hypermethylation. In CEM/MTX cells, pre-treatment with RX-3117 increased PCFT-mediated MTX uptake 8-fold, and in CEM cells 4-fold. With the reference hypomethylating agent 5-aza-2'-deoxycytidine similar values were obtained. RX-3117 also increased PCFT gene expression and PCFT protein. (4) Conclusion: RX-3117 down-regulates DNMT1, leading to hypomethylation of DNA. From the increased protein expression of tumor-suppressor genes and functional activation of PCFT, we concluded that RX-3117 might have induced hypomethylation of the promotor.
Assuntos
Citidina/análogos & derivados , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Transportador de Folato Acoplado a Próton/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular Tumoral , Citidina/farmacologia , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Metotrexato/farmacologia , Transportador de Folato Acoplado a Próton/genética , Proteínas Supressoras de Tumor/genéticaRESUMO
Oxaliplatin (OHP) treatment of colorectal cancer (CRC) frequently leads to resistance. OHP resistance was induced in CRC cell lines LoVo-92 and LoVo-Li and a platinum-sensitive ovarian cancer cell line, A2780, and related to cellular platinum accumulation, platinum-DNA adducts, transporter expression, DNA repair genes, gene expression arrays, and array-CGH profiling. Pulse (4 h, 4OHP) and continuous exposure (72 h, cOHP) resulted in 4.0 to 7.9-fold and 5.0 to 11.8-fold drug resistance, respectively. Cellular oxaliplatin accumulation and DNA-adduct formation were decreased and related to OCT1-3 and ATP7A expression. Gene expression profiling and pathway analysis showed significantly altered p53 signaling, xenobiotic metabolism, role of BRCA1 in DNA damage response, and aryl hydrocarbon receptor signaling pathways, were related to decreased ALDH1L2, Bax, and BBC3 (PUMA) and increased aldo-keto reductases C1 and C3. The array-CGH profiles showed focal aberrations. In conclusion, OHP resistance was correlated with total platinum accumulation and OCT1-3 expression, decreased proapoptotic, and increased anti-apoptosis and homologous repair genes.
Assuntos
Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Ovarianas/tratamento farmacológico , Oxaliplatina/efeitos adversos , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteína BRCA1/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Hibridização Genômica Comparativa , Adutos de DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Transportador 1 de Cátions Orgânicos/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Oxaliplatina/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Proteínas Proto-Oncogênicas/genética , Proteína Supressora de Tumor p53/genética , Proteína X Associada a bcl-2/genéticaRESUMO
BACKGROUND: Gemcitabine (2',2'-difluoro-2'-deoxycytidine) is a nucleoside analog used as a single agent and in combination regimens for the treatment of a variety of solid tumors. Several studies have shown a relationship between gemcitabine peak plasma concentration (Cmax) and hematological toxicity. An immunoassay for gemcitabine in plasma was developed and validated to facilitate therapeutic drug monitoring (TDM) by providing an economical, robust method for automated chemistry analyzers. METHODS: A monoclonal antibody was coated on nanoparticles to develop a homogenous agglutination inhibition assay. To prevent ex vivo degradation of gemcitabine in blood, tetrahydrouridine was used as a sample stabilizer. Validation was conducted for precision, recovery, cross-reactivity, and linearity on a Beckman Coulter AU480. Verification was performed on an AU5800 in a hospital laboratory. A method comparison was performed with (LC-MS/MS) liquid chromatography tandem mass spectrometry using clinical samples. Selectivity was demonstrated by testing cross-reactivity of the major metabolite, 2',2'-difluorodeoxyuridine. RESULTS: Coefficients of variation for repeatability and within-laboratory precision were <8%. The deviation between measured and assigned values was <3%. Linear range was from 0.40 to 33.02 µ/mL (1.5-125.5 µM). Correlation with validated LC-MS/MS methods was R = 0.977. The assay was specific for gemcitabine: there was no cross-reactivity to 2',2'-difluorodeoxyuridine, chemotherapeutics, concomitant, or common medications tested. Tetrahydrouridine was packaged in single-use syringes. Gemcitabine stability in whole blood was extended to 8 hours (at room temperature) and in plasma to 8 days (2-8°C). CONCLUSIONS: The assay demonstrated the selectivity, test range, precision, and linearity to perform reliable measurements of gemcitabine in plasma. The addition of stabilizer improved the sample handling. Using general clinical chemistry analyzers, gemcitabine could be measured for TDM.
Assuntos
Desoxicitidina/análogos & derivados , Plasma/química , Anticorpos Monoclonais/química , Cromatografia Líquida de Alta Pressão/métodos , Desoxicitidina/sangue , Monitoramento de Medicamentos/métodos , Humanos , Imunoensaio/métodos , Limite de Detecção , Nanopartículas/química , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , GencitabinaAssuntos
Citidina Desaminase , Neoplasias , Biomarcadores , Desoxicitidina/análogos & derivados , Humanos , GencitabinaRESUMO
A novel cytidine analog fluorocyclopentenylcytosine (RX-3117; TV-1360) was characterized for its cytotoxicity in a 59-cell line panel and further characterized for cytotoxicity, metabolism and mechanism of action in 15 additional cancer cell lines, including gemcitabine-resistant variants. In both panels sensitivity varied 75-fold (IC50: 0.4- > 30 µM RX-3117). RX-3117 showed a different sensitivity profile compared to cyclopentenyl-cytosine (CPEC) and azacytidine, substrates for uridine-cytidine-kinase (UCK). Dipyridamole, an inhibitor of the equilibrative-nucleoside-transporter protected against RX-3117. Uridine and cytidine protected against RX-3117, but deoxycytidine (substrate for deoxycytidine-kinase [dCK]) not, although it protected against gemcitabine, demonstrating that RX-3117 is a substrate for UCK and not for dCK. UCK activity was abundant in all cell lines, including the gemcitabine-resistant variants. RX-3117 was a very poor substrate for cytidine deaminase (66,000-fold less than gemcitabine). RX-3117 was rapidly metabolised to its nucleotides predominantly the triphosphate, which was highest in the most sensitive cells (U937, A2780) and lowest in the least sensitive (CCRF-CEM). RX-3117 did not significantly affect cytidine and uridine nucleotide pools. Incorporation of RX-3117 into RNA and DNA was higher in sensitive A2780 and low in insensitive SW1573 cells. In sensitive U937 cells 1 µM RX-3117 resulted in 90% inhibition of RNA synthesis but 100 µM RX-3117 was required in A2780 and CCRF-CEM cells. RX-3117 at IC50 values did not affect the integrity of RNA. DNA synthesis was completely inhibited in sensitive U937 cells at 1 µM, but in other cells even higher concentrations only resulted in a partial inhibition. At IC50 values RX-3117 downregulated the expression of DNA methyltransferase. In conclusion, RX-3117 showed a completely different sensitivity profile compared to gemcitabine and CPEC, its uptake is transporter dependent and is activated by UCK. RX-3117 is incorporated into RNA and DNA, did not affect RNA integrity, depleted DNA methyltransferase and inhibited RNA and DNA synthesis. Nucleotide formation is related with sensitivity.
Assuntos
Antineoplásicos/farmacologia , Citidina/análogos & derivados , Linhagem Celular Tumoral , Citidina/farmacologia , Citidina Desaminase/metabolismo , DNA/metabolismo , Metilases de Modificação do DNA/metabolismo , Humanos , RNA/metabolismo , Uridina Quinase/metabolismoRESUMO
Cytarabine (ara-C) and gemcitabine (dFdC) are commonly used anticancer drugs, which depend on the equilibrative (ENT) and concentrative-nucleoside-transporters to enter the cell. To bypass transport-related drug resistance, lipophilic derivatives elacytarabine (CP-4055), ara-C-5'elaidic-acid-ester, and CP-4126, (CO 1.01) gemcitabine-5'elaidic-acid-ester, were investigated for the entry into the cell, distribution, metabolism and retention. The leukemic CEM-cell-line and its deoxycytidine-kinase deficient variant (CEM/dCK-) were exposed for 30 and 60 min to the radiolabeled drugs; followed by culture in drug-free medium in order to determine drug retention in the cell. The cellular fractions were analyzed with thin-layer-chromatography and HPLC. Elacytarabine and CP-4126 were converted to the parent compounds both inside and outside the cell (35-45%). The ENT-inhibitor dipyridamole did not affect their uptake or retention. Inside the cell Elacytarabine and CP-4126 predominantly localized in the membrane and cytosolic fraction, leading to a long retention after removal of the medium. In contrast, in cells exposed to the parent drugs ara-C and dFdC, intracellular drug concentration increased during exposure but decreased to undetectable levels after drug removal. In the dCK- cell line, no metabolism was observed. The concentrations of ara-CTP and dFdCTP reached a peak at the end of the incubation with the drugs, and decreased after drug removal; peak levels of dFdCTP were 35 times higher than ara-CTP and was retained better. In contrast, after exposure to elacytarabine or CP-4126, ara-CTP and dFdCTP levels continued to increase not only during exposure but also during 120 min after removal of the elacytarabine and CP-4126. Levels of ara-CTP and dFdCTP were higher than after exposure to the parent drugs. In conclusion, the lipophilic derivatives elacytarabine and CP-4126 showed a nucleoside-transporter independent uptake, with long retention of the active nucleotides. These lipophilic nucleoside analogues are new chemical entities suitable for novel clinical applications.
Assuntos
Antineoplásicos/farmacocinética , Citarabina/análogos & derivados , Desoxicitidina/análogos & derivados , Nucleotidases/metabolismo , Antineoplásicos/metabolismo , Linhagem Celular , Citarabina/metabolismo , Citarabina/farmacocinética , Desoxicitidina/metabolismo , Desoxicitidina/farmacocinética , Desoxicitidina Quinase/metabolismo , Dipiridamol/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia/metabolismo , Proteínas de Transporte de Nucleosídeos/metabolismo , GencitabinaRESUMO
PURPOSE: Tyrosine kinase inhibitors (TKI) have poor efficacy in patients with glioblastoma (GBM). Here, we studied whether this is predominantly due to restricted blood-brain barrier penetration or more to biological characteristics of GBM. PATIENTS AND METHODS: Tumor drug concentrations of the TKI sunitinib after 2 weeks of preoperative treatment was determined in 5 patients with GBM and compared with its in vitro inhibitory concentration (IC50) in GBM cell lines. In addition, phosphotyrosine (pTyr)-directed mass spectrometry (MS)-based proteomics was performed to evaluate sunitinib-treated versus control GBM tumors. RESULTS: The median tumor sunitinib concentration of 1.9 µmol/L (range 1.0-3.4) was 10-fold higher than in concurrent plasma, but three times lower than sunitinib IC50s in GBM cell lines (median 5.4 µmol/L, 3.0-8.5; P = 0.01). pTyr-phosphoproteomic profiles of tumor samples from 4 sunitinib-treated versus 7 control patients revealed 108 significantly up- and 23 downregulated (P < 0.05) phosphopeptides for sunitinib treatment, resulting in an EGFR-centered signaling network. Outlier analysis of kinase activities as a potential strategy to identify drug targets in individual tumors identified nine kinases, including MAPK10 and INSR/IGF1R. CONCLUSIONS: Achieved tumor sunitinib concentrations in patients with GBM are higher than in plasma, but lower than reported for other tumor types and insufficient to significantly inhibit tumor cell growth in vitro. Therefore, alternative TKI dosing to increase intratumoral sunitinib concentrations might improve clinical benefit for patients with GBM. In parallel, a complex profile of kinase activity in GBM was found, supporting the potential of (phospho)proteomic analysis for the identification of targets for (combination) treatment.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/patologia , Humanos , Indóis , Proteômica , Pirróis/uso terapêutico , Sunitinibe/uso terapêuticoRESUMO
Prodrugs can have the advantage over parent drugs in increased activation and cellular uptake. The multidrug ETC-L-FdUrd and the duplex drug ETC-FdUrd are composed of two different monophosphate-nucleosides, 5-fluoro-2'deoxyuridine (FdUrd) and ethynylcytidine (ETC), coupled via a glycerolipid or phosphodiester, respectively. The aim of the study was to determine cytotoxicity levels and mode of drug cleavage. Moreover, we determined whether a liposomal formulation of ETC-L-FdUrd would improve cytotoxic activity and/or cleavage. Drug effects/cleavage were studied with standard radioactivity assays, HPLC and LC-MS/MS in FM3A/0 mammary cancer cells and their FdUrd resistant variants FM3A/TK(-). ETC-FdUrd was active (IC(50) of 2.2 and 79 nM) in FM3A/0 and TK(-) cells, respectively. ETC-L-FdUrd was less active (IC(50): 7 nM in FM3A/0 vs 4500 nM in FM3A/TK(-)). Although the liposomal formulation was less active than ETC-L-FdUrd in FM3A/0 cells (IC(50):19.3 nM), resistance due to thymidine kinase (TK) deficiency was greatly reduced. The prodrugs inhibited thymidylate synthase (TS) in FM3A/0 cells (80-90%), but to a lower extent in FM3A/TK(-) (10-50%). FdUMP was hardly detected in FM3A/TK(-) cells. Inhibition of the transporters and nucleotidases/phosphatases resulted in a reduction of cytotoxicity of ETC-FdUrd, indicating that this drug was cleaved outside the cells to the monophosphates, which was verified by the presence of FdUrd and ETC in the medium. ETC-L-FdUrd and the liposomal formulation were neither affected by transporter nor nucleotidase/phosphatase inhibition, indicating circumvention of active transporters. In vivo, ETC-FdUrd and ETC-L-FdURd were orally active. ETC nucleotides accumulated in both tumor and liver tissues. These formulations seem to be effective when a lipophilic linker is used combined with a liposomal formulation.
Assuntos
Citidina/análogos & derivados , Floxuridina/farmacologia , Animais , Linhagem Celular Tumoral , Citidina/administração & dosagem , Citidina/química , Citidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Floxuridina/administração & dosagem , Floxuridina/química , Fluordesoxiuridilato/metabolismo , Humanos , Concentração Inibidora 50 , Lipossomos/metabolismo , Camundongos , Proteínas de Transporte de Nucleosídeos/metabolismo , Nucleosídeos/metabolismo , Timidilato Sintase/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The prognosis of patients with advanced oesophageal cancer (EC) and gastric cancer (GC) is poor. Circulating microRNAs (ci-miRNAs) may have prognostic and predictive value to improve patient selection for palliative treatment. The purpose of this study is to assess the prognostic and predictive value of specific ci-miRNAs in plasma of patients with EC and GC treated with first-line palliative gemcitabine and cisplatin. Droplet digital PCR (ddPCR) was used to quantify miR-200c-3p, miR-375, miR-21-5p, miR-148a-3p, miR-146a-5p, miR-141-3p and miR-218-5p in plasma from 68 patients. ci-miRNA expression was analyzed in relation to overall survival (OS), progression-free survival (PFS), and response to chemotherapy. ci-miRNA levels were detectable in 36 baseline (71%) samples and in 14 (47%) follow-up samples. Increased circulating miR-200c-3p in GC showed a trend (p = 0.06) towards a shorter OS. High circulating miR-375 was associated with a longer OS (p = 0.02) in patients with esophageal adenocarcinoma (EAC). No significant difference was observed in ci-miRNA expression between paired pre- and on-treatment samples. ci-miRNA expression was not associated with response to chemotherapy. ci-miRNAs can be measured in plasma samples of patients treated with first-line palliative chemotherapy using ddPCR despite prolonged storage in heparin. Elevated circulating miR-375 might be a prognostic marker for patients with EAC.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Esofágicas/sangue , Neoplasias Esofágicas/tratamento farmacológico , Junção Esofagogástrica , MicroRNAs/sangue , Neoplasias Gástricas/sangue , Neoplasias Gástricas/tratamento farmacológico , Idoso , Cisplatino/administração & dosagem , Ensaios Clínicos Fase II como Assunto , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Feminino , Ácido Fólico/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Cuidados Paliativos , Prognóstico , Intervalo Livre de Progressão , Ensaios Clínicos Controlados Aleatórios como Assunto , Taxa de Sobrevida , GencitabinaRESUMO
Renal function-based carboplatin dosing using measured glomerular filtration rate (GFR) results in more consistent drug exposure than anthropometric dosing. We aimed to validate the Newell dosing equation using estimated GFR (eGFR) and study which equation most accurately predicts carboplatin clearance in children with retinoblastoma. In 13 children with retinoblastoma 38 carboplatin clearance values were obtained from individual fits using MWPharm++. Carboplatin exposure (AUC) was calculated from administered dose and observed carboplatin clearance and compared to predicted AUC calculated with a carboplatin dosing equation (Newell) using different GFR estimates. Different dosing regimens were compared in terms of accuracy, bias and precision. All patients had normal eGFR. Carboplatin exposure using cystatin C-based eGFR equations tended to be more accurate compared to creatinine-based eGFR (30% accuracy 76.3-89.5% versus 76.3-78.9%, respectively), which led to significant overexposure, especially in younger (aged ≤ 2 years) children. Of all equations, the Schwartz cystatin C-based equation had the highest accuracy and lowest bias. Although anthropometric dosing performed comparably to many of the eGFR equations overall, we observed a weight-dependent change in bias leading to underdosing in the smallest patients. Using cystatin C-based eGFR equations for carboplatin dosing in children leads to more accurate carboplatin-exposure in patients with normal renal function compared to anthropometric dosing. In children with impaired kidney function, this trend might be more pronounced. Anthropometric dosing is hampered by a weight-dependent bias.
RESUMO
Sorafenib leads to clinical benefit in a subgroup of patients, whereas all are exposed to potential toxicity. Currently, no predictive biomarkers are available. The purpose of this study was to evaluate whether 11C-sorafenib and 15O-H2O PET have potential to predict treatment efficacy. Methods: In this prospective exploratory study, 8 patients with advanced solid malignancies and an indication for sorafenib treatment were included. Microdose 11C-sorafenib and perfusion 15O-H2O dynamic PET scans were performed before and after 2 wk of sorafenib therapy. The main objective was to assess whether tumor 11C-sorafenib uptake predicts sorafenib concentrations during therapy in corresponding tumor biopsy samples measured with liquid chromatography tandem mass spectrometry. Secondary objectives included determining the association of 11C-sorafenib PET findings, perfusion 15O-H2O PET findings, and sorafenib concentrations after therapeutic dosing with response. Results:11C-sorafenib PET findings did not predict sorafenib concentrations in tumor biopsy samples during therapy. In addition, sorafenib plasma and tumor concentrations were not associated with clinical outcome in this exploratory study. Higher 11C-sorafenib accumulation in tumors at baseline and day 14 of treatment showed an association with poorer prognosis and correlated with tumor perfusion (Spearman correlation coefficient = 0.671, P = 0.020). Interestingly, a decrease in tumor perfusion measured with 15O-H2O PET after only 14 d of therapy showed an association with response, with a decrease in tumor perfusion of 56% ± 23% (mean ± SD) versus 18% ± 32% in patients with stable and progressive disease, respectively. Conclusion: Microdose 11C-sorafenib PET did not predict intratumoral sorafenib concentrations after therapeutic dosing, but the association between a decrease in tumor perfusion and clinical benefit warrants further investigation.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Adulto , Humanos , Pessoa de Meia-Idade , Niacinamida , Compostos de Fenilureia , SorafenibeRESUMO
Background: tyrosine kinase inhibitors (TKIs) inhibit phosphorylation of signaling proteins. TKIs often show large variations in the clinic due to poor pharmacology, possibly leading to resistance. We compared gut absorption of inhibitors of epidermal growth factor receptor (erlotinib, gefitinib, and afatinib), ALK-cMET (crizotinib), PDGFR/BCR-Abl (dasatinib), and multikinase inhibitors (sunitinib and sorafenib). In clinical samples, we measured the disposition of each compound within various blood compartments. Methods: we used an optimized CaCo2 gut epithelial model to characterize 20 µM TKI absorption. The apical/basolateral transfer is considered to represent the gut/blood transfer. Drugs were measured using LC-MS/MS. Results: sorafenib and sunitinib showed the highest apical/basolateral transfer (Papp 14.1 and 7.7 × 10-6 cm/s, respectively), followed by dasatinib (3.4), afatinib (1.5), gefitinib (0.38), erlotinib (0.13), and crizotinib (n.d.). However, the net absorptions for dasatinib, afatinib, crizotinib, and erlotinib were highly negative (efflux ratios >5) or neutral/negative, sorafenib (0.86), gefitinib (1.0), and sunitinib (1.6). A high negative absorption may result in resistance because of a poor exposure of tissues to the drug. Accumulation of the TKIs at the end of the transfer period (A->B) was not detectable for erlotinib, very low for afatinib 0.45 pmol/µg protein), followed by gefitinib (0.79), dasatinib (1.1), sorafenib (1.65), and crizotinib (2.11), being highest for sunitinib (11.9). A similar pattern was found for accumulation of these drugs in other colon cell lines, WiDr and HT29. In clinical samples, drugs accumulated consistently in red blood cells; blood to plasma ratios were all > 3 (sorafenib) or over 30 for erlotinib. Conclusions: TKIs are consistently poorly absorbed, but accumulation in red blood cells seems to compensate for this.
RESUMO
Identification of predictive biomarkers for targeted therapies requires information on drug exposure at the target site as well as its effect on the signaling context of a tumor. To obtain more insight in the clinical mechanism of action of protein kinase inhibitors (PKIs), we studied tumor drug concentrations of protein kinase inhibitors (PKIs) and their effect on the tyrosine-(pTyr)-phosphoproteome in patients with advanced cancer. Tumor biopsies were obtained from 31 patients with advanced cancer before and after 2 weeks of treatment with sorafenib (SOR), erlotinib (ERL), dasatinib (DAS), vemurafenib (VEM), sunitinib (SUN) or everolimus (EVE). Tumor concentrations were determined by LC-MS/MS. pTyr-phosphoproteomics was performed by pTyr-immunoprecipitation followed by LC-MS/MS. Median tumor concentrations were 2-10 µM for SOR, ERL, DAS, SUN, EVE and >1 mM for VEM. These were 2-178 × higher than median plasma concentrations. Unsupervised hierarchical clustering of pTyr-phosphopeptide intensities revealed patient-specific clustering of pre- and on-treatment profiles. Drug-specific alterations of peptide phosphorylation was demonstrated by marginal overlap of robustly up- and downregulated phosphopeptides. These findings demonstrate that tumor drug concentrations are higher than anticipated and result in drug specific alterations of the phosphoproteome. Further development of phosphoproteomics-based personalized medicine is warranted.
RESUMO
INTRODUCTION: RX-3117 is an oral, small molecule cytidine analog anticancer agent with an improved pharmacological profile relative to gemcitabine and other nucleoside analogs. The agent has excellent activity against various cancer cell lines and xenografts including gemcitabine-resistant variants and it has excellent oral bioavailability; it is not a substrate for the degradation enzyme cytidine deaminase. RX-3117 is being evaluated at a daily oral schedule of 700 mg (5 days/week for 3 weeks) which results in plasma levels in the micromolar range that have been shown to be cytotoxic to cancer cells. It has shown clinical activity in refractory bladder cancer and pancreatic cancer. Areas covered: The review provides an overview of the relevant market and describes the mechanism of action, main pharmacokinetic/pharmacodynamic features and clinical development of this investigational small molecule. Expert opinion: RX-3117 is selectively activated by uridine-cytidine kinase 2 (UCK2), which is expressed only in tumors and has a dual mechanism of action: DNA damage and inhibition of DNA methyltransferase 1 (DNMT1). Because of its tumor selective activation, novel mechanism of action, excellent oral bioavailability and candidate biomarkers for patient selection, RX-3117 has the potential to replace gemcitabine in the treatment of a spectrum of cancer types.
Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Citidina/análogos & derivados , Neoplasias/tratamento farmacológico , Administração Oral , Antimetabólitos Antineoplásicos/farmacocinética , Antimetabólitos Antineoplásicos/farmacologia , Disponibilidade Biológica , Citidina/farmacocinética , Citidina/farmacologia , Citidina/uso terapêutico , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Humanos , Neoplasias/patologia , Seleção de Pacientes , GencitabinaRESUMO
PURPOSE: Dose and schedule optimization of treatment with tyrosine kinase inhibitors is of utmost importance. On the basis of preclinical data, a phase I clinical trial of once weekly or once every 2 weeks administration of high-dose sunitinib in patients with refractory solid malignancies was conducted. PATIENTS AND METHODS: Patients with advanced cancer refractory to standard treatment were eligible. With use of a standard 3 + 3 phase I design, patients received escalating doses of sunitinib, in 100 mg increments, starting at 200 mg once weekly. In both the once weekly and once every 2 weeks cohorts, 10 more patients were included at the maximum tolerated dose level. Primary end points were safety and tolerability. RESULTS: Sixty-nine patients with advanced cancer, predominantly colorectal cancer (42%), were treated with this alternative dosing regimen. Maximum tolerated dose was established at 300 mg once weekly and 700 mg once every 2 weeks, resulting in nine- and 18-fold higher maximum plasma concentrations compared with standard dose, respectively. Treatment was well tolerated, with fatigue (81%), nausea (48%), and anorexia (33%) being the most frequent adverse events. The only grade 3 or 4 treatment-related adverse event in 5% or more of patients was fatigue (6%). Sixty-three percent of patients had significant clinical benefit, with a 30% progression-free survival of 5 months or more. CONCLUSION: Sunitinib administered once weekly at 300 mg or once every 2 weeks at 700 mg is feasible, with comparable tolerability as daily administration. Administration of 700 mg once every 2 weeks can be considered as the most optimal schedule because of the highest maximum plasma concentration being reached. The promising preliminary antitumor activity of this alternative schedule in heavily pretreated patients warrants further clinical evaluation and might ultimately indicate a class characteristic of tyrosine kinase inhibitors.
Assuntos
Neoplasias/tratamento farmacológico , Sunitinibe/administração & dosagem , Administração Oral , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética , Sunitinibe/efeitos adversos , Sunitinibe/farmacocinéticaRESUMO
Tyrosine kinase inhibitors are a class of chemotherapeutic drugs that target specific protein kinases. These tyrosine kinase inhibitors constitute a relatively new class of drugs which target for instance Bcr-Abl, Epidermal Growth Factor Receptor (EGFR) and Vascular Endothelial Growth Factor Receptor (VEGFR). Despite some initial successes, the overall therapeutic benefit of tyrosine kinase inhibitors in the clinic has been mixed. Next to mutations in the target, multidrug resistance is a major obstacle for which still no clinically effective strategies have been developed. Major mechanisms of multidrug resistance are mediated by drug efflux transporter proteins. Moreover, there is accumulating evidence that multidrug resistance can also be caused by lysosomal sequestration of drugs, effectively trapping tyrosine kinase inhibitors and preventing them from reaching their target. Lysosomal drug sequestration seems to work together with ATP-binding cassette transporters, increasing the capacity of lysosomes to mediate sequestration. Both membrane efflux transporter proteins and lysosomes present potential therapeutic targets that could reverse multidrug resistance and increase drug efficacy in combination therapy. This review describes both mechanisms and discusses a number of proposed strategies to circumvent or reverse tyrosine kinase inhibitor-related multidrug resistance.
RESUMO
DNA methylation plays an important role in carcinogenesis and aberrant methylation patterns have been found in many tumors. Methylation is regulated by DNA methyltransferases (DNMT), catalyzing DNA methylation. Therefore inhibition of DNMT is an interesting target for anticancer treatment. RX-3117 (fluorocyclopentenylcytosine) is a novel demethylating antimetabolite that is currently being studied in clinical trials in metastatic bladder and pancreatic cancers. The active nucleotide of RX-3117 is incorporated into DNA leading to downregulation of DNMT1, the maintenance DNA methylation enzyme. Since DNMT1 is a major target for the activity of RX-3117, DNMT1 may be a potential predictive biomarker. Therefore, DNMT1 protein and mRNA expression was investigated in 19 cancer cell lines, 26 human xenografts (hematological, lung, pancreatic, colon, bladder cancer) and 10 colorectal cancer patients. The DNMT1 mRNA expression showed large variation between cell lines (100-fold) and the 26 xenografts (1100-fold) investigated. The DNMT1 protein was overexpressed in colon tumours from patients compared to non-malignant mucosa from the same patients (P = 0.02). The DNA methylation in these patients was significantly higher in tumour tissues compared to normal mucosa (P = 0.001). DNMT1 expression in normal white blood cells also showed a large variation. In conclusion, the large variation in DNMT1 expression may serve as a potential biomarker for demethylating therapy such as with RX-3117.
Assuntos
Antineoplásicos/farmacologia , Citidina/análogos & derivados , DNA (Citosina-5-)-Metiltransferases/metabolismo , 5-Metilcitosina/análise , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Citidina/farmacologia , Metilação de DNA/efeitos dos fármacos , Desoxiuridina/análise , Feminino , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Masculino , Camundongos Nus , Pessoa de Meia-Idade , RNA Mensageiro/metabolismoRESUMO
Antimetabolites are incorporated into DNA and RNA, affecting their function. Liquid-chromatography-mass-spectrometry (LC-MS-MS) permits the sensitive, selective analysis of normal nucleosides. The method was adapted to measure the incorporation of deoxyuridine, gemcitabine (difluorodeoxycytidine), its metabolite difluorodeoxyuridine (dFdU), and the novel compound fluorocyclopentenylcytosine (RX3117). DNA was degraded to its deoxynucleotides for quantification by LC-MS-MS, gradient chromatography on a Phenomenex prodigy-3-ODS with positive ionization. The range of deoxyuridine DNA-mis-incorporation varied nine-fold in 27 cell lines (leukemia, colon, ovarian, lung cancer). At low-folate conditions a 2.1-fold increase in deoxyuridine was observed. Global methylation (given as % 5-methyl-deoxycytidine) was comparable between the cell lines (4.6-6.5%). Exposure of A2780 cells to 1 µM gemcitabine (4 hours) resulted in 3.6 pmol gemcitabine/µg DNA, but in AG6000 cells (deoxycytidine-kinase-deficient) no incorporation was found. However, when A2780, AG6000, or CCRF-CEM cells were exposed to 100 µM dFdU we found it as gemcitabine, 20.5, 19.6, and 0.51 pmol gemcitabine/µg DNA, respectively. Preincubation of CCRF-CEM cells with cyclopentenyl-cytosine (a CTP-synthetase inhibitor) increased dFdU incorporation four-fold. Apparently dFdU is activated independently of deoxycytidine-kinase and possibly converted in-situ to dFdCMP. RX3117 was incorporated into both DNA and RNA (0.0037 and 0.00515 pmol/µg, respectively). In summary, a sensitive method to quantify the incorporation of gemcitabine, deoxyuridine, and RX-3117 was developed, which revealed that dFdU was incorporated into DNA as the parent compound gemcitabine.
Assuntos
Citidina/análogos & derivados , Metilação de DNA , Desoxicitidina/análogos & derivados , Floxuridina/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida , Citidina/metabolismo , DNA/metabolismo , Desoxicitidina/metabolismo , Humanos , Limite de Detecção , Espectrometria de Massas , RNA/metabolismo , GencitabinaRESUMO
In up to 5% of non-small cell lung cancer (NSCLC) patients, the EML4-ALK translocation drives tumor progression. Treatment with the ALK inhibitor crizotinib is more effective than standard chemotherapy. However, resistance to crizotinib occurs after approximately 8 months. Ceritinib is the first second-generation ALK inhibitor approved for treatment of crizotinib-resistant NSCLC. Ceritinib inhibits two of the most common ALK-mutants that confer resistance to crizotinib: L1196 M and G1269A. Cells with ALK expression are more sensitive to ceritinib than crizotinib (IC50 25 nM vs. 150 nM, respectively). Alternative second-generation ALK inhibitors such as Alectinib, Brigatinib and PF-06463922 are currently in development, each affecting different crizotinib-resistant ALK target mutations. Genetic identification of crizotinib-resistant mutants is essential for selecting the optimal treatment strategy in NSCLC patients to overcome resistance and to increase progression-free survival.