Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Res ; 171: 105755, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34229049

RESUMO

Diabetic retinopathy (DR) is one of the common complications in diabetic patients. Nowadays, VEGF pathway is subject to extensive research. However, about 27% of the patients have a poor visual outcome, with 50% still having edema after two years' treatment of diabetic macular edema (DME) with ranibizumab. Docosahexaenoic acid (DHA), the primary ω-3 long-chain polyunsaturated fatty acid (LC-PUFA), reduces abnormal neovascularization and alleviates neovascular eye diseases. A study reported that fish oil reduced the incidence of retinopathy of prematurity (ROP) by about 27.5% in preterm infants. Although ω-3 LC-PUFAs protects against pathological retinal neovascularization, the treatment effectiveness is low. It is interesting to investigate why DHA therapy fails in some patients. In human vitreous humor samples, we found that the ratio of DHA and DHA-derived metabolites to total fatty acids was higher in vitreous humor from DR patients than that from macular hole patients; however, the ratio of DHA metabolites to DHA and DHA-derived metabolites was lower in the diabetic vitreous humor. The expression of Mfsd2a, the LPC-DHA transporter, was reduced in the oxygen-induced retinopathy (OIR) model and streptozotocin (STZ) model. In vitro, Mfsd2a overexpression inhibited endothelial cell proliferation, migration and vesicular transcytosis. Moreover, Mfsd2a overexpression in combination with the DHA diet obviously reduced abnormal retinal neovascularization and vascular leakage, which is more effective than Mfsd2a overexpression alone. These results suggest that DHA therapy failure in some DR patients is linked to low expression of Mfsd2a, and the combination of Mfsd2a overexpression and DHA therapy may be an effective treatment.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Retinopatia Diabética/metabolismo , Edema Macular/metabolismo , Simportadores/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Tipo 1/dietoterapia , Retinopatia Diabética/dietoterapia , Ácidos Docosa-Hexaenoicos/administração & dosagem , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Retina/metabolismo , Simportadores/genética , Corpo Vítreo/metabolismo , Cicatrização
2.
Pharmacol Res ; 160: 105044, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32590102

RESUMO

Small vessel diseases, such as ischemic retinopathy and cerebral small vessel disease (CSVD), are increasingly recognized in patients with diabetes, dementia and cerebrovascular disease. The mechanisms of small vessel diseases are poorly understood, but the latest studies suggest a role for semaphorins. Initially identified as axon guidance cues, semaphorins are mainly studied in neuronal morphogenesis, neural circuit assembly, and synapse assembly and refinement. In recent years, semaphorins have been found to play important roles in regulating vascular growth and development and in many pathophysiological processes, including atherosclerosis, angiogenesis after stroke and retinopathy. Growing evidence indicates that semaphorins affect the occurrence, perfusion and regression of both the macrovasculature and microvasculature by regulating the proliferation, apoptosis, migration, barrier function and inflammatory response of endothelial cells, vascular smooth muscle cells (VSMCs) and pericytes. In this review, we concentrate on the regulatory effects of semaphorins on the cell components of the vessel wall and their potential roles in microvascular diseases, especially in the retina and cerebral small vessel. Finally, we discuss potential molecular approaches in targeting semaphorins as therapies for microvascular disorders in the eye and brain.


Assuntos
Vasos Sanguíneos/fisiologia , Circulação Cerebrovascular/fisiologia , Olho/irrigação sanguínea , Semaforinas/fisiologia , Animais , Vasos Sanguíneos/fisiopatologia , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Humanos , Neovascularização Patológica , Vasos Retinianos/fisiologia
3.
Adv Sci (Weinh) ; 10(3): e2203351, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36437109

RESUMO

Diabetic retinopathy (DR) is the leading cause of vision loss in working age population. Intravitreal injection of anti-VEGF antibody is widely used in clinical practice. However, about 27% of patients show poor response to anti-VEGF therapy and about 50% of these patients continue to have macular thickening. Frequent intravitreal injections of antibody may increase the chance of endophthalmitis and cause visual loss or even blindness once happened. Therefore, there is a greatly urgent need for novel noninvasive target to treat DR clinically. Here, the formulation of a smart supramolecular peptide (SSP) eye drop for DR treatment that is effective via specifically identifying and capturing soluble semaphorin 4D (sSema4D), a strongly pro-angiogenesis and exudates factor, is reported. The SSP nanostructures encapsulate sSema4D so that all biological effects mediated by three receptors of sSema4D are inhibited, thereby significantly alleviating pathological retinal angiogenesis and exudates in DR. Moreover, it is found that combination of SSPs eye drop and anti-VEGF injection shows better therapeutic effect over anti-VEGF treatment alone. Overall, SSP eye drop provide an alternative and effective method for noninvasive treatment for DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/tratamento farmacológico , Inibidores da Angiogênese/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Soluções Oftálmicas/uso terapêutico , Peptídeos , Injeções Intravítreas , Diabetes Mellitus/tratamento farmacológico
4.
EMBO Mol Med ; 12(2): e10154, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31943789

RESUMO

Diabetic retinopathy (DR) is a common complication of diabetes and leads to blindness. Anti-VEGF is a primary treatment for DR. Its therapeutic effect is limited in non- or poor responders despite frequent injections. By performing a comprehensive analysis of the semaphorins family, we identified the increased expression of Sema4D during oxygen-induced retinopathy (OIR) and streptozotocin (STZ)-induced retinopathy. The levels of soluble Sema4D (sSema4D) were significantly increased in the aqueous fluid of DR patients and correlated negatively with the success of anti-VEGF therapy during clinical follow-up. We found that Sema4D/PlexinB1 induced endothelial cell dysfunction via mDIA1, which was mediated through Src-dependent VE-cadherin dysfunction. Furthermore, genetic disruption of Sema4D/PlexinB1 or intravitreal injection of anti-Sema4D antibody reduced pericyte loss and vascular leakage in STZ model as well as alleviated neovascularization in OIR model. Moreover, anti-Sema4D had a therapeutic advantage over anti-VEGF on pericyte dysfunction. Anti-Sema4D and anti-VEGF also conferred a synergistic therapeutic effect in two DR models. Thus, this study indicates an alternative therapeutic strategy with anti-Sema4D to complement or improve the current treatment of DR.


Assuntos
Retinopatia Diabética/tratamento farmacológico , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Transdução de Sinais , Animais , Antígenos CD , Diabetes Mellitus , Retinopatia Diabética/induzido quimicamente , Humanos , Camundongos , Neovascularização Patológica
5.
EBioMedicine ; 39: 95-108, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30579864

RESUMO

BACKGROUND: Neointimal hyperplasia is a prominent pathological event during in-stent restenosis. Phenotype switching of vascular smooth muscle cells (VSMCs) from a differentiated/contractile to a dedifferentiated/synthetic phenotype, accompanied by migration and proliferation of VSMCs play an important role in neointimal hyperplasia. However, the molecular mechanisms underlying phenotype switching of VSMCs have yet to be fully understood. METHODS: The mouse carotid artery ligation model was established to evaluate Sema3A expression and its role during neointimal hyperplasia in vivo. Bioinformatics analysis, chromatin immunoprecipitation (ChIP) assays and promoter-luciferase reporter assays were used to examine regulatory mechanism of Sema3A expression. SiRNA transfection and lentivirus infection were performed to regulate Sema3A expression. EdU assays, Wound-healing scratch experiments and Transwell migration assays were used to assess VSMC proliferation and migration. FINDINGS: In this study, we found that semaphorin-3A (Sema3A) was significantly downregulated in VSMCs during neointimal hyperplasia after vascular injury in mice and in human atherosclerotic plaques. Meanwhile, Sema3A was transcriptionally downregulated by PDGF-BB via p53 in VSMCs. Furthermore, we found that overexpression of Sema3A inhibited VSMC proliferation and migration, as well as increasing differentiated gene expression. Mechanistically, Sema3A increased the NRP1-plexin-A1 complex and decreased the NRP1-PDGFRß complex, thus inhibiting phosphorylation of PDGFRß. Moreover, we found that overexpression of Sema3A suppressed neointimal hyperplasia after vascular injury in vivo. INTERPRETATION: These results suggest that local delivery of Sema3A may act as a novel therapeutic option to prevent in-stent restenosis.


Assuntos
Aterosclerose/genética , Neointima/prevenção & controle , Semaforina-3A/genética , Lesões do Sistema Vascular/genética , Animais , Aterosclerose/metabolismo , Becaplermina/metabolismo , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Camundongos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Neointima/genética , Neointima/metabolismo , Semaforina-3A/metabolismo , Transdução de Sinais , Transcrição Gênica , Lesões do Sistema Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa