Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34576236

RESUMO

Wounds in tissues provide a pathway of entry for pathogenic fungi and bacteria in plants. Plants respond to wounding by regulating the expression of genes involved in their defense mechanisms. To analyze this response, we investigated the defense-related genes induced by wounding in the leaves of Senna tora using RNA sequencing. The genes involved in jasmonate and ethylene biosynthesis were strongly induced by wounding, as were a large number of genes encoding transcription factors such as ERFs, WRKYs, MYBs, bHLHs, and NACs. Wounding induced the expression of genes encoding pathogenesis-related (PR) proteins, such as PR-1, chitinase, thaumatin-like protein, cysteine proteinase inhibitor, PR-10, and plant defensin. Furthermore, wounding led to the induction of genes involved in flavonoid biosynthesis and the accumulation of kaempferol and quercetin in S. tora leaves. All these genes were expressed systemically in leaves distant from the wound site. These results demonstrate that mechanical wounding can lead to a systemic defense response in the Caesalpinioideae, a subfamily of the Leguminosae. In addition, a co-expression analysis of genes induced by wounding provides important information about the interactions between genes involved in plant defense responses.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Fabaceae/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Imunidade Vegetal , Plantas/efeitos dos fármacos , Etilenos/química , Perfilação da Expressão Gênica , Genes de Plantas , Quempferóis/farmacologia , Doenças das Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Quercetina/farmacologia , RNA-Seq
2.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830464

RESUMO

The genus Fragaria encompass fruits with diverse colors influenced by the distribution and accumulation of anthocyanin. Particularly, the fruit colors of strawberries with different ploidy levels are determined by expression and natural variations in the vital structural and regulatory genes involved in the anthocyanin pathway. Among the regulatory genes, MYB10 transcription factor is crucial for the expression of structural genes in the anthocyanin pathway. In the present study, we performed a genome wide investigation of MYB10 in the diploid and octoploid Fragaria species. Further, we identified seven quantitative trait loci (QTLs) associated with fruit color in octoploid strawberry. In addition, we predicted 20 candidate genes primarily influencing the fruit color based on the QTL results and transcriptome analysis of fruit skin and flesh tissues of light pink, red, and dark red strawberries. Moreover, the computational and transcriptome analysis of MYB10 in octoploid strawberry suggests that the difference in fruit colors could be predominantly influenced by the expression of MYB10 from the F. iinumae subgenome. The outcomes of the present endeavor will provide a platform for the understanding and tailoring of anthocyanin pathway in strawberry for the production of fruits with aesthetic colors.


Assuntos
Fragaria/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética , Fatores de Transcrição/genética , Antocianinas/genética , Cor , Fragaria/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Estudo de Associação Genômica Ampla , Poliploidia
3.
Biochem Biophys Res Commun ; 485(1): 174-180, 2017 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-28189687

RESUMO

14-3-3 proteins regulate numerous cellular processes through interaction with their target proteins in a phosphorylation dependent manner. Although proteins that are regulated by 14-3-3s have been studied, the regulatory mechanism of 14-3-3s is poorly understood. In the present study, F-box proteins, a component of Skp1-Cullin-F-box E3 ubiquitin ligase, were identified as 14-3-3 targets using yeast two-hybrid screening. Among them, AtSKIP18 and AtSKIP31, were shown to mediate the degradation of Arabidopsis 14-3-3s. Mutational analyses of AtSKIP18 and AtSKIP31 indicated that the phosphorylation of AtSKIPs is critical for interaction and degradation of 14-3-3s. The loss-of-function mutation in AtSKIP31 resulted in enhanced primary root growth under nitrogen deficient conditions. These findings suggest that AtSKIP31 regulates the primary root growth in nitrogen deficiency via degrading 14-3-3s.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/crescimento & desenvolvimento , Fosforilação , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Mapas de Interação de Proteínas , Proteólise , Ubiquitinação
4.
Int J Mol Sci ; 15(12): 22801-14, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25501334

RESUMO

14-3-3 proteins are regulatory proteins found in all eukaryotes and are known to selectively interact with phosphorylated proteins to regulate physiological processes. Through an affinity purification screening, many light-related proteins were recovered as 14-3-3 candidate binding partners. Yeast two-hybrid analysis revealed that the 14-3-3 kappa isoform (14-3-3κ) could bind to PHYTOCHROME INTERACTING FACTOR3 (PIF3) and CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1). Further analysis by in vitro pull-down assay confirmed the interaction between 14-3-3κ and PIF3. Interruption of putative phosphorylation sites on the 14-3-3 binding motifs of PIF3 was not sufficient to inhibit 14-3-3κ from binding or to disturb nuclear localization of PIF3. It was also indicated that 14-3-3κ could bind to other members of the PIF family, such as PIF1 and PIF6, but not to LONG HYPOCOTYL IN FAR-RED1 (HFR1). 14-3-3 mutants, as well as the PIF3 overexpressor, displayed longer hypocotyls, and a pif3 mutant displayed shorter hypocotyls than the wild-type in red light, suggesting that 14-3-3 proteins are positive regulators of photomorphogenesis and function antagonistically with PIF3. Consequently, our results indicate that 14-3-3 proteins bind to PIFs and initiate photomorphogenesis in response to a light signal.


Assuntos
Proteínas 14-3-3/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Luz , Fitocromo/metabolismo , Transdução de Sinais/efeitos da radiação , Proteínas 14-3-3/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Modelos Biológicos , Mutação , Fenótipo , Fotossíntese , Ligação Proteica , Mapeamento de Interação de Proteínas , Transporte Proteico , Técnicas do Sistema de Duplo-Híbrido
5.
Plant Cell Physiol ; 54(9): 1478-90, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23825216

RESUMO

Potassium (K) is an essential macronutrient for plant growth and reproduction. HAK5, an Arabidopsis high-affinity K transporter gene, plays an important role in K uptake. Its expression is up-regulated in response to K deprivation and is rapidly down-regulated when sufficient K levels have been re-established. To identify transcription factors regulating HAK5, an Arabidopsis TF FOX (Transcription Factor Full-length cDNA Over-eXpressor) library containing approximately 800 transcription factors was used to transform lines previously transformed with a luciferase reporter gene whose expression was driven by the HAK5 promoter. When grown under sufficient K levels, 87 lines with high luciferase activity were identified, and endogenous HAK5 expression was confirmed in 27 lines. Four lines overexpressing DDF2 (Dwarf and Delayed Flowering 2), JLO (Jagged Lateral Organs), TFII_A (Transcription initiation Factor II_A gamma chain) and bHLH121 (basic Helix-Loop-Helix 121) were chosen for further characterization by luciferase activity, endogenous HAK5 level and root growth in K-deficient conditions. Further analysis showed that the expression of these transcription factors increased in response to low K and salt stress. In comparison with controls, root growth under low K conditions was better in each of these four TF FOX lines. Activation of HAK5 expression by these four transcription factors required at least 310 bp of upstream sequence of the HAK5 promoter. These results indicate that at least these four transcription factors can bind to the HAK5 promoter in response to K limitation and activate HAK5 expression, thus allowing plants to adapt to nutrient stress.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Simportadores/genética , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Glucuronidase/genética , Glucuronidase/metabolismo , Luciferases/genética , Luciferases/metabolismo , Plantas Geneticamente Modificadas , Potássio/farmacologia , Antiportadores de Potássio-Hidrogênio , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cloreto de Sódio/farmacologia , Simportadores/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo
6.
Plant Physiol ; 152(1): 374-87, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19923234

RESUMO

The cellular functions of Ku70 in repair of DNA double-stranded breaks and telomere regulation have been described in a wide range of organisms. In this study, we identified the rice (Oryza sativa) Ku70 homolog (OsKu70) from the rice genome database. OsKu70 transcript was detected constitutively in every tissue and developmental stage examined and also in undifferentiated callus cells in rice. Yeast two-hybrid and in vitro pull-down experiments revealed that OsKu70 physically interacts with OsKu80. We obtained loss-of-function osku70 T-DNA knockout mutant lines and constructed transgenic rice plants that overexpress the OsKu70 gene in the sense (35S:OsKu70) or antisense (35S:anti-OsKu70) orientation. The homozygous G2 osku70 mutant lines were more sensitive than wild-type plants to a DNA-damaging agent (0.01%-0.05% methyl-methane sulfonate), consistent with the notion that OsKu70 participates in the DNA repair mechanism. Terminal restriction fragment analysis revealed that telomeres in homozygous G2 osku70 mutants were markedly longer (10-20 kb) than those in wild-type plants (5-10 kb), whereas telomere length in heterozygous G2 osku70 mutant and T2 OsKu70-overexpressing transgenic (35S:OsKu70) rice resembled that of the wild-type plant. In contrast to what was observed in Arabidopsis (Arabidopsis thaliana) atku70 mutants, homozygous G2 osku70 rice plants displayed severe developmental defects in both vegetative and reproductive organs under normal growth conditions, resulting in sterile flowers. Analysis of meiotic progression in pollen mother cells demonstrated that up to 11.1% (seven of 63) of G2 mutant anaphase cells displayed one or more chromosomal fusions. These results suggest that OsKu70 is required for the maintenance of chromosome stability and normal developmental growth in rice plants.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Reparo do DNA , Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta , Dados de Sequência Molecular , Mutação , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Pólen/citologia
7.
Front Plant Sci ; 12: 773553, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046973

RESUMO

Senna occidentalis is an annual leguminous herb that is rich in anthraquinones, which have various pharmacological activities. However, little is known about the genetics of S. occidentalis, particularly its anthraquinone biosynthesis pathway. To broaden our understanding of the key genes and regulatory mechanisms involved in the anthraquinone biosynthesis pathway, we used short RNA sequencing (RNA-Seq) and long-read isoform sequencing (Iso-Seq) to perform a spatial and temporal transcriptomic analysis of S. occidentalis. This generated 121,592 RNA-Seq unigenes and 38,440 Iso-Seq unigenes. Comprehensive functional annotation and classification of these datasets using public databases identified unigene sequences related to major secondary metabolite biosynthesis pathways and critical transcription factor families (bHLH, WRKY, MYB, and bZIP). A tissue-specific differential expression analysis of S. occidentalis and measurement of the amount of anthraquinones revealed that anthraquinone accumulation was related to the gene expression levels in the different tissues. In addition, the amounts and types of anthraquinones produced differ between S. occidentalis and S. tora. In conclusion, these results provide a broader understanding of the anthraquinone metabolic pathway in S. occidentalis.

8.
Plants (Basel) ; 9(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143243

RESUMO

The epithelial cell adhesion molecule (EpCAM) is a tumor-associated antigen and a potential target for tumor vaccine. The EpCAM is a cell-surface glycoprotein highly expressed in colorectal carcinomas. The objective of the present study is to develop an edible vaccine system through Agrobacterium-mediated transformation in Chinese cabbage (Brassica rapa). For the transformation, two plant expression vectors containing genes encoding for the EpCAM recombinant protein along with the fragment crystallizable (Fc) region of immunoglobulin M (IgM) and Joining (J)-chain tagged with the KDEL endoplasmic reticulum retention motif (J-chain K) were constructed. The vectors were successfully transformed and expressed in the Chinese cabbage individually using Agrobacterium. The transgenic Chinese cabbages were screened using genomic polymerase chain reaction (PCR) in T0 transgenic plant lines generated from both transformants. Similarly, the immunoblot analysis revealed the expression of recombinant proteins in the transformants. Further, the T1 transgenic plants were generated by selfing the transgenic plants (T0) carrying EpCAM-IgM Fc and J-chain K proteins, respectively. Subsequently, the T1 plants generated from EpCAM-IgM Fc and J-chain K transformants were crossed to generate F1 plants carrying both transgenes. The presence of both transgenes was validated using PCR in the F1 plants. In addition, the expression of Chinese cabbage-derived EpCAM-IgM Fc × J-chain K was evaluated using immunoblot and ELISA analyses in the F1 plants. The outcomes of the present study can be utilized for the development of a potential anti-cancer vaccine candidate using Chinese cabbage.

9.
Biochem Biophys Res Commun ; 372(1): 85-90, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18477473

RESUMO

Telomeres consist of nucleoprotein complexes that protect chromosome end structures. Here, we describe three OsTRBF genes, encoding telomere repeat-binding factors of the single Myb histone family in rice. The predicted proteins contain a Myb DNA-binding motif and a linker histone H1/H5 domain in the N-terminal and central regions, respectively. The OsTRBF transcripts were constitutively detected in rice plants grown under greenhouse conditions. Gel retardation assays showed that these OsTRBF proteins bind specifically to the plant double-stranded telomeric sequence, TTTAGGG, with markedly different binding affinities as judged by their respective dissociation constants. Yeast two-hybrid and in vitro pull-down assays indicated that both OsTRBF1 and OsTRBF2 interact with one another to form homo- and hetero-complexes, while OsTRBF3 appeared to act as a monomer. Our results suggest that OsTRBFs play combinatory roles in the function and structure of telomeres in rice.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Sequência de Aminoácidos , Dimerização , Ensaio de Desvio de Mobilidade Eletroforética , Dados de Sequência Molecular , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estrutura Terciária de Proteína , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/genética , Técnicas do Sistema de Duplo-Híbrido
10.
Mol Cells ; 28(5): 463-72, 2009 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-19855938

RESUMO

Although the possible cellular roles of several ubiquitin-specific proteases (UBPs) were identified in Arabidopsis, almost nothing is known about UBP homologs in rice, a monocot model plant. In this report, we searched the rice genome database ( http://signal.salk.edu/cgi-bin/RiceGE ) and identified 21 putative UBP family members (OsUBPs) in the rice genome. These OsUBP genes each contain a ubiquitin carboxyl-terminal hydrolase (UCH) domain with highly conserved Cys and His boxes and were subdivided into 9 groups based on their sequence identities and domain structures. RT-PCR analysis indicated that rice OsUBP genes are expressed at varying degrees in different rice tissues. We isolated a full-length cDNA clone for OsUBP6, which possesses not only a UCH domain, but also an N-terminal ubiquitin motif. Bacterially expressed OsUBP6 was capable of dismantling K48-linked tetraubiquitin chains in vitro. Quantitative real-time RT-PCR indicated that OsUBP6 is constitutively expressed in different tissues of rice plants. An in vivo targeting experiment showed that OsUBP6 is predominantly localized to the nucleus in onion epidermal cells. We also examined how knock-out of OsUBP6 affects developmental growth of rice plants. Although homozygous T3 osubp6 T-DNA insertion mutant seedlings displayed slower growth relative to wild type seedlings, mature mutant plants appeared to be normal. These results raise the possibility that loss of OsUBP6 is functionally compensated for by an as-yet unknown OsUBP homolog during later stages of development in rice plants.


Assuntos
Endopeptidases/química , Endopeptidases/metabolismo , Oryza/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , DNA Bacteriano/genética , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Endopeptidases/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Dados de Sequência Molecular , Mutagênese Insercional/genética , Cebolas/citologia , Especificidade de Órgãos/genética , Oryza/genética , Proteínas de Plantas/genética , Estrutura Terciária de Proteína , Transporte Proteico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de Proteína , Estresse Fisiológico/genética , Frações Subcelulares/metabolismo , Proteases Específicas de Ubiquitina , Ubiquitinação
11.
Plant Cell ; 19(6): 1770-81, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17586654

RESUMO

Although several potential telomere binding proteins have been identified in higher plants, their in vivo functions are still unknown at the plant level. Both knockout and antisense mutants of RICE TELOMERE BINDING PROTEIN1 (RTBP1) exhibited markedly longer telomeres relative to those of the wild type, indicating that the amount of functional RTBP1 is inversely correlated with telomere length. rtbp1 plants displayed progressive and severe developmental abnormalities in both germination and postgermination growth of vegetative organs over four generations (G1 to G4). Reproductive organ formation, including panicles, stamens, and spikelets, was also gradually and severely impaired in G1 to G4 mutants. Up to 11.4, 17.2, and 26.7% of anaphases in G2, G3, and G4 mutant pollen mother cells, respectively, exhibited one or more chromosomal fusions, and this progressively increasing aberrant morphology was correlated with an increased frequency of anaphase bridges containing telomeric repeat DNA. Furthermore, 35S:anti-RTBP1 plants expressing lower levels of RTBP1 mRNA exhibited developmental phenotypes intermediate between the wild type and mutants in all aspects examined, including telomere length, vegetative and reproductive growth, and degree of genomic anomaly. These results suggest that RTBP1 plays dual roles in rice (Oryza sativa), as both a negative regulator of telomere length and one of positive and functional components for proper architecture of telomeres.


Assuntos
Instabilidade Genômica , Oryza/crescimento & desenvolvimento , Oryza/genética , Proteínas de Plantas/metabolismo , Supressão Genética , Proteínas de Ligação a Telômeros/metabolismo , Análise Citogenética , DNA Bacteriano , Flores/crescimento & desenvolvimento , Genoma de Planta , Mutagênese Insercional , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Fenótipo , Plantas Geneticamente Modificadas , Pólen/citologia , Telômero/metabolismo
12.
Planta ; 220(6): 875-88, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15538622

RESUMO

Through the use of subtractive hybridization analysis, we have identified 14 partial cDNA clones (pCa-DSRs) that are rapidly induced by dehydration in hot pepper (Capsicum annuum L.) roots. The predicted proteins encoded by Ca-DSRs are putatively involved in processes as diverse as primary and secondary metabolism, protein degradation, and stress responses, indicating the complexity of cellular responses to water deficit in hot pepper roots. Particularly, we investigated the detailed structural properties and expression profiles of Ca-DSR2 (Ca-DREBLP1: dehydration-responsive element binding-factor-like protein 1) encoding a protein that contains a single ERF/AP2 DNA-binding domain. Based on the conserved 14th valine and 19th glutamic acid residues in the ERF/AP2 domain, a basic amino acid stretch (PKKPAGRKKFR) near its N-terminal region, and DSAW signature sequence at the end of its ERF/AP2 domain, Ca-DREBLP1 was classified as a member of a DREB1-type subfamily. Gel retardation assays revealed that Ca-DREBLP1 was able to form a specific complex with the DRE/CRT motif, but not with the GCC box. When fused to the GAL4 DNA-binding domain, the Ca-DREBLP1(190-215) mutant could effectively function as a trans-activator in yeast. This suggests that the extreme C-terminal region plays an essential role in transcription activation. In hot pepper plants, Ca-DREBLP1 was rapidly induced by dehydration, high salinity and, to a lesser extent, mechanical wounding, but not by cold stress. Thus, although the structural features of Ca-DREBLP1 resemble those of the DREB1-type proteins of Arabidopsis thaliana and rice plants, its induction patterns are reminiscent of the DREB2-type proteins, indicating that Ca-DREBLP1 is a novel class DREB subfamily in hot pepper.


Assuntos
Capsicum/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Núcleo Celular/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cinética , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Proteínas de Plantas/isolamento & purificação , Raízes de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Mapeamento por Restrição , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , Temperatura , Fatores de Transcrição/isolamento & purificação , Água/farmacologia
13.
Plant Mol Biol ; 55(1): 61-81, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15604665

RESUMO

From a pathogen-inoculated hot pepper (Capsicum annuum L. cv. Pukang) leaf EST, we identified a cDNA clone, pCaERFLP1, encoding a putative transcription factor that contains a single ERF/AP2 DNA binding domain. CaERFLP1 was most closely related to tomato LeERF2 (73%), both of which belong to the novel ERF class IV typified by the N-terminal MCGGAIL signature sequence, while it had a limited sequence identity (25-30%) with Arabidopsis AtERFs and tobacco NtERFs. Quantitative gel retardation assays revealed that bacterially expressed full-length CaERFLP1 was able to form a specific complex with both the GCC box and DRE/CRT motif, with its binding affinity for GCC being stronger than for DRE/CRT. When fused to the GAL4 DNA binding domain, the N-terminal CaERFLP1(1-37) and C-terminal CaERFLP1(198-264) mutant polypeptides could function individually as transactivators in yeast. This suggests that two separate domains of CaERFLP1 may play distinct roles in transcription activation. In particle co-bombardment experiments, CaERFLP1 activated the transcription of reporter genes containing the 4X[GCC] element in tobacco cells. In hot pepper plants, the steady-state level of CaERFLP1 mRNA was markedly induced by multiple environmental factors, such as pathogen infection, ethylene, mechanical wounding and high salinity. Furthermore, ectopic expression of CaERFLP1 in transgenic tobacco plants resulted in partially improved tolerance against the bacterial pathogen Pseudomonas syringae and salt stress (100 mM NaCl). Consistently, various defense-related genes, including GCC box-containing PR genes and the DRE/CRT-containing LTI45 (ERD10) gene, were constitutively expressed in 35S::CaERFLP1 tobacco plants. Thus, it appears that CaERFLP1 is functional in tobacco cells, where it induces the transactivation of some GCC- and DRE/CRT-genes to trigger a subset of stress response. Here, the possible biological role(s) of CaERFLP1 is discussed, especially with regard to the possibility that CaERFLP1 has multiple functions in the regulation of GCC- and DRE/CRT-mediated gene expression in hot pepper plants.


Assuntos
Capsicum/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Ligação Competitiva , Núcleo Celular/metabolismo , DNA Complementar/química , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Pseudomonas syringae/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , Estresse Mecânico , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/microbiologia , Ativação Transcricional
14.
Plant Physiol ; 133(4): 2040-7, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14630961

RESUMO

We analyzed 6749 lines tagged by the gene trap vector pGA2707. This resulted in the isolation of 3793 genomic sequences flanking the T-DNA. Among the insertions, 1846 T-DNAs were integrated into genic regions, and 1864 were located in intergenic regions. Frequencies were also higher at the beginning and end of the coding regions and upstream near the ATG start codon. The overall GC content at the insertion sites was close to that measured from the entire rice (Oryza sativa) genome. Functional classification of these 1846 tagged genes showed a distribution similar to that observed for all the genes in the rice chromosomes. This indicates that T-DNA insertion is not biased toward a particular class of genes. There were 764, 327, and 346 T-DNA insertions in chromosomes 1, 4 and 10, respectively. Insertions were not evenly distributed; frequencies were higher at the ends of the chromosomes and lower near the centromere. At certain sites, the frequency was higher than in the surrounding regions. This sequence database will be valuable in identifying knockout mutants for elucidating gene function in rice. This resource is available to the scientific community at http://www.postech.ac.kr/life/pfg/risd.


Assuntos
DNA Bacteriano/genética , DNA de Cadeia Simples/genética , Oryza/genética , Sequência de Bases , Primers do DNA , DNA Bacteriano/química , Éxons , Vetores Genéticos , Íntrons , Mutagênese Insercional , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase , Sitios de Sequências Rotuladas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa