Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Neurochem ; 165(6): 791-808, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36660878

RESUMO

The traditional medicinal mushroom Hericium erinaceus is known for enhancing peripheral nerve regeneration through targeting nerve growth factor (NGF) neurotrophic activity. Here, we purified and identified biologically new active compounds from H. erinaceus, based on their ability to promote neurite outgrowth in hippocampal neurons. N-de phenylethyl isohericerin (NDPIH), an isoindoline compound from this mushroom, together with its hydrophobic derivative hericene A, were highly potent in promoting extensive axon outgrowth and neurite branching in cultured hippocampal neurons even in the absence of serum, demonstrating potent neurotrophic activity. Pharmacological inhibition of tropomyosin receptor kinase B (TrkB) by ANA-12 only partly prevented the NDPIH-induced neurotrophic activity, suggesting a potential link with BDNF signaling. However, we found that NDPIH activated ERK1/2 signaling in the absence of TrkB in HEK-293T cells, an effect that was not sensitive to ANA-12 in the presence of TrkB. Our results demonstrate that NDPIH acts via a complementary neurotrophic pathway independent of TrkB with converging downstream ERK1/2 activation. Mice fed with H. erinaceus crude extract and hericene A also exhibited increased neurotrophin expression and downstream signaling, resulting in significantly enhanced hippocampal memory. Hericene A therefore acts through a novel pan-neurotrophic signaling pathway, leading to improved cognitive performance.


Assuntos
Sistema de Sinalização das MAP Quinases , Memória Espacial , Camundongos , Animais , Transdução de Sinais , Neurônios/metabolismo , Hipocampo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor trkB/metabolismo , Células Cultivadas
2.
Biol Pharm Bull ; 46(11): 1517-1526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37914355

RESUMO

Isoflavones and their derivatives possess neuroprotective activities against neurological disorders. Recently, the active compound SPA1413 (dehydroequol) derived from S-equol, an isoflavone-derived metabolite produced by human intestinal bacteria, was identified as a potent anti-amyloidogenic and neuroinflammatory candidate against Alzheimer's disease. However, its detailed modes of action, associated signaling pathways, and comparison with potential isoflavone derivatives have not yet been studied. Hence, the current study aimed to identify signaling pathways associated with SPA1413 using lipopolysaccharides (LPS)-stimulated BV2 cells as the experimental model via biological assays, Western blotting, and quantitative (q)RT-PCR. The results indicate that the SPA1413 anti-neuroinflammatory effect arises due to suppression of the nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and mitogen-activated protein kinase (MAPK) signaling networks, including those of p38 and c-Jun N-terminal kinase (JNK). Interestingly, SPA1413 inhibited IL-11 through the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway. In addition, SPA1413 inhibited neuronal cell death by reducing LPS-activated microglia in neuronal N2a cells. Our findings suggest that SPA1413 may act as a strong anti-neuroinflammatory candidate by suppressing the MAPK and JAK/STAT signaling pathways.


Assuntos
Isoflavonas , Proteínas Quinases Ativadas por Mitógeno , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Lipopolissacarídeos/farmacologia , Janus Quinases/metabolismo , Janus Quinases/farmacologia , NF-kappa B/metabolismo , Transdução de Sinais , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Isoflavonas/metabolismo , Óxido Nítrico/metabolismo , Microglia
3.
Skin Res Technol ; 29(9): e13440, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37753671

RESUMO

BACKGROUND: Severity of Alopecia Tool (SALT) is widely used to assess the severity of alopecia areata (AA). However, physician-related subjectivity exists in SALT scoring (S1-5), especially with initial inspection in the clinical practice. This study investigated two-dimensional planimetric method to calculate actual surface area of AA, validating SALT scoring. MATERIALS AND METHODS: SALT score was measured twice in each patient based on "initial" inspection in the clinic (SALT-I) and retrospective assessment of the "photograph" (SALT-P). Planimetric surface area was calculated by Image J program. Subgroup analysis was performed depending on the agreement between SALT-I and -P; score was described in the order of SALT-I and SALT-P. RESULTS: A total of 93 subjects were enrolled. Planimetric surface area (cm2 ) of SALT-I was 2.5-74.9 (S1), 48.8-100.6 (S2), 83.6-205.4 (S3), and 282-367.9 (S4), while SALT-P was 2.5-59.2 (S1), 41.6-205.4 (S2), 48.8-183.2 (S3), and 282-367.9 (S4). In subgroup analysis, SALT-I and SALT-P agreed group showed planimetric surface area (cm2 ) as 2.5-59.2 (S1-1), 64.2-100.6 (S2-2), 168.3-183 (S3-3), and 282.6-367.9 (S4-4). Disagreed group showed the value as 54.7 (S1-2), 41.6-74.9 (S2-1), 83.6-205.4 (S2-3), and 48.8-88.6 (S3-2). CONCLUSION: SALT-P was more clearly correlated with actual surface area than SALT-I. Planimetric surface area measurement could be used as a supplementary method especially in the S1 to S3, suggesting 60 cm2 , 100 cm2 , and 200 cm2 as objective cutoff values to differentiate S1, S2, and S3.

4.
Phytother Res ; 37(1): 140-150, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36065796

RESUMO

Huperzia serrata contains Huperzine A (HupA)-an alkaloid used to treat cognitive dysfunction. In this study, we used the total alkaloids (HsAE) to investigate their potential in managing cognitive impairment in comparison with HupA. The antioxidant activity was measured by DPPH assay. In the cellular study, the cell viability and level of ACh of SH-SY5Y cells were evaluated after pretreated with HsAE and scopolamine. For in vivo assay, mice were pre-treated with HsAE, and HupA and undergone scopolamine injection for cognitive impairment. The behavioral tests including the Y-maze and Morris water maze test and the AChE activity, the SOD, CAT, MDA level in the hippocampus and cortex were evaluated. HsAE showed significant scavenging properties on DPPH radicals. HsAE was not toxic to SH-SY5Y cells, and can rescue these cells upon scopolamine treatment. Intriguingly, HsAE showed the neuroprotection against scopolamine-induced amnesia in mice. Moreover, HsAE decreased AChE activity, MDA level, increased antioxidative enzyme activity in the hippocampus as well as cortex of mice, which was relatively better than that of HupA. These findings suggested that HsAE may significantly protect the neurons of mice with scopolamine-induced memory impairment connected to AChE depletion and oxidative stress.


Assuntos
Alcaloides , Huperzia , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Camundongos , Animais , Escopolamina , Fármacos Neuroprotetores/farmacologia , Huperzia/química , Huperzia/metabolismo , Alcaloides/farmacologia , Alcaloides/química , Antioxidantes/farmacologia , Estresse Oxidativo , Acetilcolinesterase/metabolismo
5.
Pharm Biol ; 61(1): 135-143, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36617895

RESUMO

CONTEXT: Alkaloid-enriched extract of Huperzia serrata (Thunb.) Trevis (Lycopodiaceae) (HsAE) can potentially be used to manage neuronal disorders. OBJECTIVE: This study determines the anti-neuroinflammatory effects of HsAE on lipopolysaccharide (LPS)-stimulated BV-2 microglial cells and the underlying mechanisms. MATERIALS AND METHODS: BV-2 cells were pre- or post-treated with different concentrations of HsAE (25-150 µg/mL) for 30 min before or after LPS induction. Cell viability was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and no cytotoxicity was found. Nitric oxide (NO) concentration was determined using Griess reagent. The levels of prostaglandin E2 (PGE2), tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 were determined using enzyme-linked immunosorbent assay. The levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 and the phosphorylation of mitogen-activated protein kinase (MAPK) were analyzed using western blotting. RESULTS: HsAE reduced LPS-induced NO production with half-maximal inhibitory concentration values of 99.79 and 92.40 µg/mL at pre- and post-treatment, respectively. Pre-treatment with HsAE at concentrations of 50, 100, and 150 µg/mL completely inhibited the secretion of PGE2, TNF-α, IL-6, and IL-1ß compared to post-treatment with HsAE. This suggests that prophylactic treatment is better than post-inflammation treatment. HsAE decreased the expression levels of iNOS and COX-2 and attenuated the secretion of pro-inflammatory factors by downregulating the phosphorylation of p38 and extracellular signal-regulated protein kinase in the MAPK signaling pathway. DISCUSSION AND CONCLUSIONS: HsAE exerts anti-neuroinflammatory effects on LPS-stimulated BV-2 cells, suggesting that it may be a potential candidate for the treatment of neuroinflammation in neurodegenerative diseases.


Assuntos
Alcaloides , Huperzia , Lipopolissacarídeos/farmacologia , Huperzia/metabolismo , Interleucina-6/metabolismo , Doenças Neuroinflamatórias , Dinoprostona/metabolismo , Microglia , Fator de Necrose Tumoral alfa/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Alcaloides/farmacologia , Alcaloides/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
6.
J Org Chem ; 87(16): 10836-10847, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35946352

RESUMO

The secondary metabolites from Hericium erinaceus are well-known to have neurotrophic and neuroprotective effects. Isohericerinol A (1), isolated by our colleagues from its fruiting parts has a strong ability to increase the nerve growth factor secretion in C6 glioma cells. The current work describes the total synthesis of 1 and its regioisomer 5 in a few steps. We present two different approaches to 1 and a regiodivergent approach for both 1 and 5 by utilizing easily accessible feedstocks. Interestingly, the natural product 1, regioisomer 5, and their intermediates exhibited potent neurotrophic activity in in vitro experimental systems. Thus, these synthetic strategies provide access to a systematic structure-activity relationship study of natural product 1.


Assuntos
Produtos Biológicos , Glioma , Fármacos Neuroprotetores , Produtos Biológicos/farmacologia , Humanos , Fármacos Neuroprotetores/farmacologia
7.
J Nat Prod ; 85(4): 917-926, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35263118

RESUMO

Three new procyanidins (1-3), two new phlobatannins (6 and 7), a new flavan-3,4-diol glycoside (9), and a new neolignan glycoside (10), along with three previously reported compounds (4, 5, and 8) were isolated from the twigs of Rosa multiflora. The chemical structures of the new compounds (1-3, 6, 7, 9, and 10) were characterized by spectroscopic data interpretation, including NMR (1H and 13C NMR, 1H-1H COSY, HSQC, HMBC, and NOESY) and HRESIMS analysis. Experimental ECD data analysis was conducted to assign the absolute configurations of the new compounds (1-3, 6, 7, 9, and 10). The absolute configuration of the sugar moieties was verified through a chiral derivatization method and LC-MS analysis. All the isolated compounds (1-10) were evaluated for their anti-neuroinflammatory activity based on inhibitory effects on nitric oxide production using a lipopolysaccharide-stimulated murine microglia BV-2 cell line and for their neurotrophic effects on nerve growth factor induction in C6 glioma.


Assuntos
Fármacos Neuroprotetores , Proantocianidinas , Rosa , Animais , Glicosídeos/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico , Proantocianidinas/farmacologia , Rosa/metabolismo
8.
Biol Pharm Bull ; 45(1): 51-62, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34732594

RESUMO

Methylglyoxal (MGO), which is produced as a byproduct of glucose metabolism, is the leading to diabetic cardiovascular complications. Salvia miltiorrhiza Bunge (Lamiaceae) has been reported as a potential plant to control diabetes and cardiovascular disease. However, no report exists on the effect of Salvia miltiorrhiza Bunge extract (SME) on MGO-induced glucotoxicity in human umbilical vein endothelial cells (HUVECs). We demonstrated the protective effects of SME (1, 5, and 10 µg/mL) and its components against MGO-induced endothelial dysfunction in HUVECs. Cytotoxicity was evaluated using the several in vitro experiments. Additionally, the protein expression of receptor of advanced glycation end-products (RAGE), mitogen-activated protein kinase (MAPK) pathway and glyoxalase system were measured. Then, the inhibitory effects of SME and its main components on MGO-induced oxidative stress, radical scavenging, formation of MGO-derived advanced glycation end products (AGEs), and MGO-AGEs crosslinking were evaluated. SME (10 µg/mL) strongly prevented expressed levels of RAGE, MGO-induced apoptosis and reduced reactive oxygen species (ROS) generation in HUVECs, comparing with 1 mM aminoguanidine. Additionally, SME (5 and 10 µg/mL) reduced the expression of proteins (e.g., p-extracellular signal-regulated kinase (ERK) and p-p38) in the MAPKs pathway and upregulated the glyoxalase system in HUVECs. SME (0.5-10 mg/mL), dihydrotanshinone (0.4 mM), and rosmarinic acid (0.4 mM) prevented MGO-AGEs formation and broke the MGO-AGE crosslinking. These results show that S. miltiorrhiza has protective effects against MGO-induced glucotoxicity by regulating the proteins involved in apoptosis, glyoxalase system and antioxidant activity. We expect that S. miltiorrhiza is a potential natural resource for the treatment of MGO-induced vascular endothelial dysfunction.


Assuntos
Aldeído Pirúvico , Salvia miltiorrhiza , Apoptose , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Estresse Oxidativo , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Salvia miltiorrhiza/metabolismo
9.
Bioorg Med Chem Lett ; 31: 127714, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33246107

RESUMO

Four compounds, hericerin (1), isohericerinol A (2), N-de-phenylethyl isohericerin (3) and corallocin A (4) were isolated from the fruiting bodies of Hericium erinaceus, a lion's mane mushroom (Hericiaceae). Among them, isohericerinol A (2) was newly reported in nature. Further investigation of the neurotrophic effect of isolated compounds demonstrated that isohericerinol A (2) strongly increased the nerve growth factor (NGF) production in C6 glioma cells followed by corallocin A (4) and hericerin (1). Increased NGF production by these compounds promoted the neurite outgrowth in N2a neuronal cells. Western blot analysis also showed the increased protein expression of NGF, brain-derived neurotrophic factor (BDNF) and synaptophysin (SYP) in C6-N2a cells. Taken together, our present study characterized the neurotrophic constituents of H. erinaceus, which may support the potential use of memory improvement.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Carpóforos/química , Hericium/química , Isoindóis/farmacologia , Fator de Crescimento Neural/biossíntese , Sinaptofisina/biossíntese , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Isoindóis/química , Isoindóis/isolamento & purificação , Simulação de Acoplamento Molecular , Estrutura Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Relação Estrutura-Atividade
10.
Bioorg Chem ; 114: 105098, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34153812

RESUMO

Investigation of chemical constituents of Masclura tricuspidata leaves resulted in the isolation of 47 isoflavonoids possessing prenyl groups with different numbers and structures. Among them, sixteen compounds named cudracusisoflavones A-P (1-16) were first isolated from nature. The isoflavonoids isolated from M. tricuspidata leaves showed anti-diabetic effects as measured by inhibition on α-glucosidase activity and advanced glycation end-products (AGEs) formations. Especially, cudracusisoflavone L (12), a new compound, together with gancaonin M (27), erysenegalensein E (41) and millewanin G (44) showed strong α-glucosidase inhibition with IC50 values <10.0 µM. In addition, cudracusisoflavones A (1), D (4), M (13) and N (14), together with known prenylated isoflavonoids efficiently inhibited methylglyoxal (MGO)- or glyoxal (GO)-induced AGE formations. Structure activity relationship together with molecular docking analysis suggested the importance of hydroxy group and linear type of prenyl moiety for α-glucosidase inhibition. Conclusively, diverse prenylated isoflavonoids in M. tricuspidata leaves might ameliorate glycotoxicity-induced metabolic diseases.


Assuntos
Flavonoides/farmacologia , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Moraceae/química , alfa-Glucosidases/metabolismo , Relação Dose-Resposta a Droga , Flavonoides/química , Flavonoides/isolamento & purificação , Produtos Finais de Glicação Avançada/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Glicosilação/efeitos dos fármacos , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Simulação de Acoplamento Molecular , Estrutura Molecular , Folhas de Planta/química , Saccharomyces cerevisiae/enzimologia , Relação Estrutura-Atividade
11.
Pharm Biol ; 57(1): 684-693, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31608754

RESUMO

Context: Kochia scoparia (L.) Schrad (Amaranthaceae), known as a traditional medicine in China, Japan and Korea, is reported to have various biological activities. However, K. scoparia seed extract (KSE) functional roles on angiogenesis and prostate cancer inhibition have not been elucidated. Objective: This study elucidates the effects of KSE on vascular endothelial growth factor (VEGF)-induced angiogenesis in human umbilical vein endothelial cells (HUVECs) and inhibition of proliferation in prostate cancer cells. Materials and methods: HUVECs were treated with 10-20 µg/mL of KSE and 20-50 ng/mL of VEGF for 12-72 h. Anti-angiogenesis properties of KSE were determined by wound healing, trans-well, tube formation, rat aortic ring assay and western blotting. Prostate cancer and normal cells were incubated with 10-250 µg/mL of KSE for 24 h, and cell viability was measured by SRB assay. Phenolic compounds in KSE were analyzed using a HPLC-PDA system. Results: IC50 for cell viability of HUVECs, LNCaP, PC-3, RC-58T and RWPE-1 by KSE were 30.64, 89.25, 123.41, 141.62 and >250 µg/mL, respectively. Treatment with KSE (20 µg/mL) significantly suppressed VEGF-induced migration, invasion and capillary-like structure formation of HUVECs and microvessel sprouting from rat aortic rings. In addition, KSE down-regulated PI3K/AKT/mTOR levels and phosphorylation of VEGF receptor 2 in HUVECs. 3-OH-tyrosol (1.63 mg/g) and morin hydrate (0.17 mg/g) were identified in KSE. Conclusions: KSE inhibits angiogenesis in HUVECs as well as proliferation in human prostate cancer cells, suggesting KSE may be useful herbal medicine for preventing progression of prostate cancer and angiogenesis.


Assuntos
Inibidores da Angiogênese/farmacologia , Bassia scoparia/química , Extratos Vegetais/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Inibidores da Angiogênese/isolamento & purificação , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Neovascularização Patológica/tratamento farmacológico , Fosfatidilinositol 3-Quinase/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Sementes , Serina-Treonina Quinases TOR/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Molecules ; 23(3)2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29518052

RESUMO

This study aimed to determine the anti-osteoclastogenic effects of extracts from Aronia melanocarpa 'Viking' (AM) and identify the underlying mechanisms in vitro. Reactive oxygen species (ROS) are signal mediators in osteoclast differentiation. AM extracts inhibited ROS production in RAW 264.7 cells in a dose-dependent manner and exhibited strong radical scavenging activity. The extracts also attenuated the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts. To attain molecular insights, the effect of the extracts on the signaling pathways induced by receptor activator of nuclear factor kappa B ligand (RANKL) were also investigated. RANKL triggers many transcription factors through the activation of mitogen-activated protein kinase (MAPK) and ROS, leading to the induction of osteoclast-specific genes. The extracts significantly suppressed RANKL-induced activation of MAPKs, such as extracellular signal-regulated kinase (ERK), c-Jun-N-terminal kinase (JNK) and p38 and consequently led to the downregulation of c-Fos and nuclear factor of activated T cells 1 (NFATc1) protein expression which ultimately suppress the activation of the osteoclast-specific genes, cathepsin K, TRAP, calcitonin receptor and integrin ß3. In conclusion, our findings suggest that AM extracts inhibited RANKL-induced osteoclast differentiation by downregulating ROS generation and inactivating JNK/ERK/p38, nuclear factor kappa B (NF-κB)-mediated c-Fos and NFATc1 signaling pathway.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Photinia/química , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ligante RANK/metabolismo , Animais , Antocianinas/química , Antioxidantes/química , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Flavonoides , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Fenóis , Compostos Fitoquímicos/química , Extratos Vegetais/química , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Sci Rep ; 14(1): 1843, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246969

RESUMO

Advanced glycation end products (AGEs) have potential implications on several diseases including skin inflammation and aging. AGEs formation can be triggered by several factors such as UVB, glyoxal and methylglyoxal etc. However, little attention has been paid to glyoxal-derived AGEs (GO-AGEs) and UVB-induced skin inflammaging, with none have investigated together. This study aimed to investigate the possible role of GO-AGEs and UVB in skin inflammaging focusing on revealing its molecular mechanisms. The effects of GO-AGEs in the presence or absence of UVB were studied by using enzyme linked immunosorbent assay, western blotting, qPCR, flow cytometry and in silico approaches. In HaCaT cells, GO-AGEs in the presence of UVB irradiation (125 mJ/cm2) dramatically enhanced the release of different pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α) with further activation of RAGE signaling pathways (NF-κB, COX 2, and IL- 1ß) and increased oxidative stress also noticed in NHEK cells. In NHDF cells, extracellular matrix disruption noted via increasing matrix metalloproteinase release and decreasing collagen type 1 and SIRT1 expression. Besides that, the docking scores obtained from the molecular docking study support the above-mentioned results. This study strongly suggests the pivotal role of GO-AGEs in skin inflammaging and illuminates novel molecular pathways for searching most effective and updated anti-aging therapy.


Assuntos
Dermatite , Glioxal , Humanos , Simulação de Acoplamento Molecular , Pele , Interleucina-1beta , Produtos Finais de Glicação Avançada
14.
Ann Dermatol ; 36(1): 29-34, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38325431

RESUMO

BACKGROUND: Analysis of hair microscopic morphology is a simple and less invasive method to differentiate alopecia areata (AA) from other alopecic diseases. However, there is limited information on the distribution of the microscopic characteristics. OBJECTIVE: This study evaluated the microscopic morphological characteristics of pulled-out hair and their correlation with disease course in AA. METHODS: Morphological characteristics of pulled-out hair were classified into 5 categories: the presence of typical clubbing, surface undulation, tapering, breakage, and depigmentation in proximal hair shaft. Clinical course of AA was investigated through assessment of Severity of Alopecia Tool (SALT) score (initial score, maximal score and difference of them [ΔSALT]). RESULTS: Among 1,272 pulled-out hairs (n=179) obtained at initial visit, depigmentation (59.5%) was the most common, followed by loss of typical clubbing (57.2%) and surface undulation (55.2%). The percentage of loss of typical clubbing and proximal tapering was significantly higher in severe type of AA, younger age of onset and shorter disease duration. The ratio of typical clubbing (<50% vs. ≥50%) was associated with difference in maximal score and ΔSALT (p<0.05). Strong activity group (pulled-out hair ≥10, n=33) showed difference in clinical course (maximal score, ΔSALT) as well as distribution of microscopic features (loss of typical clubbing) compared with those in non-strong activity group. The ratio of typical clubbing significantly increased at follow-up than initially in strong activity group (p<0.05). CONCLUSION: Microscopic hair morphology, especially loss of typical clubbing and proximal tapering, could be useful tool to predict the course of AA.

15.
Ann Dermatol ; 36(3): 145-150, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816975

RESUMO

BACKGROUND: It is well known that adequate water intake and moisturizer application improves skin barrier function. OBJECTIVE: This study was conducted to analyze the effects of daily water intake and moisturizer application on skin barrier function and the degree of response to barrier recovery. METHODS: Participants with daily water intake more than 1 L were classified as high daily water intake group (H) and those with less than 1 L as low daily water intake group (L). Each group was subcategorized into four groups according to intervention method: additional water intake (H1, L1), moisturizer (H2, L2), both (H3, L3), and control (H4, L4). Transepidermal water loss (TEWL) and stratum corneum hydration (SCH) were measured at baseline during the 2nd and 4th week. RESULTS: A total of 43 participants completed the study (H: 22, L: 21). At baseline, there was no significant difference in SCH and TEWL in any on the anatomical sites between the high daily water intake and low daily water intake groups. However, SCHs of left forearm (group H2, p=0.004; group H3, p=0.004), left hand dorsum (group H2, p=0.010; group H3, p=0.026), and left shin (group H2, p=0.016; group H3, p=0.001) in group H2 and H3 were significantly increased in the 4th week as compared to the baseline values. CONCLUSION: The results suggest that the degree of water intake may be related to improved skin barrier function. However, application of additional moisturizers had more favorable impact on skin hydration as compared to additional water intake.

16.
Nutrients ; 16(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542752

RESUMO

Probiotic fermentation of plant-based materials can lead to the generation of various bioactive substances via bacterial metabolites and the biotransformation of phenolic compounds. We compared the metabolic differences between fermentation by Limosilactobacillus fermentum KCTC15072BP (LFG) and fermentation by Lactiplantibacillus plantarum KGMB00831 (LPG) in guava leaf extract (0%, 0.5%, and 2% (w/v))-supplemented medium via non-targeted metabolite profiling. By performing multivariate statistical analysis and comparing the different guava leaf extract groups, 21 guava-derived and 30 bacterial metabolites were identified. The contents of guava-derived glucogallin, gallic acid, and sugar alcohols were significantly higher in LFG than they were in LPG. Similarly, significantly higher contents of guava-derived pyrogallol, vanillic acid, naringenin, phloretin, and aromatic amino acid catabolites were obtained with LPG than with LFG. LFG led to significantly higher antioxidant activities than LPG, while LPG led to significantly higher antiglycation activity than LFG. Interestingly, the fermentation-induced increase in the guava-leaf-extract-supplemented group was significantly higher than that in the control group. Thus, the increased bioactivity induced by guava fermentation with the Lactobacillaceae strain may be influenced by the synergistic effects between microbial metabolites and plant-derived compounds. Overall, examining the metabolic changes in plant-based food fermentation by differentiating the origin of metabolites provides a better understanding of food fermentation.


Assuntos
Limosilactobacillus fermentum , Psidium , Antioxidantes/metabolismo , Psidium/química , Fenóis/análise , Extratos Vegetais/farmacologia , Extratos Vegetais/química
17.
Biomol Ther (Seoul) ; 32(2): 249-260, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38355138

RESUMO

New supplements with preventive effects against skin photodamage are receiving increasing attention. This study evaluated the anti-photoaging effects of salmon nasal cartilage proteoglycan (SPG), acting as a functional material for skin health. We administered SPG to in vitro and in vivo models exposed to ultraviolet B (UVB) radiation and assessed its moisturizing and anti-wrinkle effects on dorsal mouse skin and keratinocytes and dermal fibroblasts cell lines. These results showed that SPG restored the levels of filaggrin, involucrin, and AQP3 in the epidermis of UVB-irradiated dorsal skin and keratinocytes, thereby enhancing the keratinization process and water flow. Additionally, SPG treatment increased the levels of hyaluronan and skin ceramide, the major components of intercellular lipids in the epidermis. Furthermore, SPG treatment significantly increased the levels of collagen and procollagen type 1 by down-regulating matrix metalloproteinase 1, which play a crucial role in skin fibroblasts, in both in vitro and in vivo models. In addition, SPG strongly inhibited mitogen-activated protein kinase (MAPKs) signaling, the including extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK), and p38. These findings suggest that dietary SPG may be an attractive functional food for preventing UVB-induced photoaging. And this SPG product may provide its best benefit when treating several signs of skin photoaging.

18.
Anal Chem ; 85(21): 10033-9, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24063774

RESUMO

Enhanced visualization of small peptides absorbed through a rat intestinal membrane was achieved by matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-IMS) with the aid of phytic acid as a matrix additive. Penetrants through intestinal peptide transporter 1, i.e., glycyl-sarcosine (Gly-Sar, 147.1 m/z) and antihypertensive dipeptide, Val-Tyr (281.2 m/z), were chosen for MALDI-IMS. The signal-to-noise (S/N) ratios of dipeptides Gly-Sar and Val-Tyr were seen to increase by 2.4- and 8.0-fold, respectively, when using a 2',4',6'-trihydroxyacetophenone (THAP) matrix containing 5.0 mM phytic acid, instead of the THAP matrix alone. Owing to the phytic-acid-aided MALDI-IMS method, Gly-Sar and Val-Tyr absorbed in the rat intestinal membrane were successfully visualized. The proposed imaging method also provided useful information on intestinal peptide absorption; to some extent, Val-Tyr was rapidly hydrolyzed to Tyr by peptidases located at the intestinal microvillus during the absorption process. In conclusion, the strongly acidic additive, phytic acid, is beneficial for enhancing the visualization of small peptides using MALDI-IMS, owing to the suppression of ionization-interfering salts in the tissue.


Assuntos
Dipeptídeos/farmacocinética , Intestino Delgado/metabolismo , Ácido Fítico/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Masculino , Ratos , Ratos Sprague-Dawley
19.
Biomol Ther (Seoul) ; 31(5): 573-582, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562979

RESUMO

Muscle atrophy is characterized by the loss of muscle function. Many efforts are being made to prevent muscle atrophy, and exercise is an important alternative. Methylglyoxal is a well-known causative agent of metabolic diseases and diabetic complications. This study aimed to evaluate whether methylglyoxal induces muscle atrophy and to evaluate the ameliorative effect of moderate-intensity aerobic exercise in a methylglyoxal-induced muscle atrophy animal model. Each mouse was randomly divided into three groups: control, methylglyoxal-treated, and methylglyoxal-treated within aerobic exercise. In the exercise group, each mouse was trained on a treadmill for 2 weeks. On the last day, all groups were evaluated for several atrophic behaviors and skeletal muscles, including the soleus, plantaris, gastrocnemius, and extensor digitorum longus were analyzed. In the exercise group, muscle mass was restored, causing in attenuation of muscle atrophy. The gastrocnemius and extensor digitorum longus muscles showed improved fiber cross-sectional area and reduced myofibrils. Further, they produced regulated atrophy-related proteins (i.e., muscle atrophy F-box, muscle RING-finger protein-1, and myosin heavy chain), indicating that aerobic exercise stimulated their muscle sensitivity to reverse skeletal muscle atrophy. In conclusion, shortness of the gastrocnemius caused by methylglyoxal may induce the dynamic imbalance of skeletal muscle atrophy, thus methylglyoxal may be a key target for treating skeletal muscle atrophy. To this end, aerobic exercise may be a powerful tool for regulating methylglyoxal-induced skeletal muscle atrophy.

20.
Fitoterapia ; 170: 105664, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37652269

RESUMO

Four undescribed neolignan analogs, together with eight known compounds, were isolated from the twigs of Pinus koraiensis (Korean pine). The chemical structure of the isolated compounds was determined through extensive spectroscopic analysis and chemical method. Their relative and absolute configurations were assigned through a well-established empirical rule and electronic circular dichroism (ECD) analysis, respectively. Four compounds (3 and 9-11) at 20 µM concentration showed significant neurotrophic effect by inducing nerve growth factor (NGF) secretion in C6 cells with the stimulation levels a range of 140.82 ± 4.62% to 160.04 ± 11.04%. Additionally, the result indicated that the glycosylation of neolignan led to an improvement in neurotrophic activity compared to their aglycone form. A compound (7) inhibited nitric oxide production with an IC50 value of 31.74 µM in LPS-activated BV2 cells.


Assuntos
Lignanas , Pinus , Lignanas/farmacologia , Lignanas/química , Estrutura Molecular , Dicroísmo Circular , Óxido Nítrico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa