RESUMO
Purpose: Diabetic macular edema (DME) is a sight-threatening complication of diabetes. Consequently, studying the proteome of DME may provide novel insights into underlying molecular mechanisms. Methods: In this study, aqueous humor samples from eyes with treatment-naïve clinically significant DME (n = 13) and age-matched controls (n = 11) were compared with label-free liquid chromatography-tandem mass spectrometry. Additional aqueous humor samples from eyes with treatment-naïve DME (n = 15) and controls (n = 8) were obtained for validation by enzyme-linked immunosorbent assay (ELISA). Best-corrected visual acuity (BCVA) was evaluated, and the severity of DME was measured as central subfield thickness (CST) employing optical coherence tomography. Control samples were obtained before cataract surgery. Significantly changed proteins were identified using a permutation-based calculation, with a false discovery rate of 0.05. A human donor eye with DME and a control eye were used for immunofluorescence. Results: A total of 101 proteins were differentially expressed in the DME. Regulated proteins were involved in complement activation, glycolysis, extracellular matrix interaction, and cholesterol metabolism. The highest-fold change was observed for the fibrinogen alpha chain (fold change = 17.8). Complement components C2, C5, and C8, fibronectin, and hepatocyte growth factor-like protein were increased in DME and correlated with best-corrected visual acuity (BCVA). Ceruloplasmin and complement component C8 correlated with central subfield thickness (CST). Hemopexin, plasma kallikrein, monocyte differentiation antigen CD14 (CD14), and lipopolysaccharide-binding protein (LBP) were upregulated in the DME. LBP was correlated with vascular endothelial growth factor. The increased level of LBP in DME was confirmed using ELISA. The proteins involved in desmosomal integrity, including desmocollin-1 and desmoglein-1, were downregulated in DME and correlated negatively with CST. Immunofluorescence confirmed the extravasation of fibrinogen at the retinal level in the DME. Conclusion: Elevated levels of pro-inflammatory proteins, including the complement components LBP and CD14, were observed in DME. DME was associated with the loss of basal membrane proteins, compromised desmosomal integrity, and perturbation of glycolysis.
Assuntos
Diabetes Mellitus , Retinopatia Diabética , Edema Macular , Humanos , Edema Macular/tratamento farmacológico , Retinopatia Diabética/complicações , Proteoma/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Humor Aquoso/metabolismo , Tomografia de Coerência Óptica , Fibrinogênio/metabolismo , Injeções Intravítreas , Inibidores da Angiogênese/uso terapêutico , Diabetes Mellitus/metabolismoRESUMO
Aging changes the responsiveness of our immune defense, and this decline in immune reactivity plays an important role in the increased susceptibility to infections that marks progressing age. Aging is also the most pronounced risk factor for development of age-related macular degeneration (AMD), a disease that is characterized by dysfunctional retinal pigment epithelial (RPE) cells and loss of central vision. We have previously shown that acute systemic viral infection has a large impact on the retina in young mice, leading to upregulation of chemokines in the RPE/choroid (RPE/c) and influx of CD8 T cells in the neuroretina. In this study, we sought to investigate the impact of systemic infection on the RPE/c in aged mice to evaluate whether infection in old age could play a role in the pathogenesis of AMD. We found that systemic infection in mice led to upregulation of genes from the crystallin family in the RPE/c from aged mice, but not in the RPE/c from young mice. Crystallin alpha A (CRYAA) was the most upregulated gene, and increased amounts of CRYAA protein were also detected in the aged RPE/c. Increased CRYAA gene and protein expression has previously been found in drusen and choroid from AMD patients, and this protein has also been linked to neovascularization. Since both drusen and neovascularization are important hallmarks of advanced AMD, it is interesting to speculate if upregulation of crystallins in response to infection in old age could be relevant for the pathogenesis of AMD.
Assuntos
Envelhecimento , Corioide , Degeneração Macular , Camundongos Endogâmicos C57BL , Epitélio Pigmentado da Retina , Regulação para Cima , Animais , Camundongos , Corioide/metabolismo , Corioide/patologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Degeneração Macular/metabolismo , Degeneração Macular/genética , Modelos Animais de Doenças , Western Blotting , Infecções Oculares Virais/metabolismo , Infecções Oculares Virais/virologia , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Classic Hodgkin lymphoma (CHL) is a highly curable disease, even in advanced stages. Controversy remains over whether bone involvement negatively affects overall and progression-free survival in patients treated with intensive chemotherapy regimens. Whether cases that present with bone lesions harbor specific tumor microenvironmental features is unknown. We investigated protein expression in diagnostic lymph node biopsies from CHL patients with and without skeletal involvement at diagnosis to identify potential markers of skeletal disease. Protein expression patterns in diagnostic formalin-fixed paraffin-embedded lymphoma lymph node samples from CHL patients were analyzed by nano-liquid chromatography-tandem mass spectrometry. Patients were grouped according to skeletal involvement, which was defined as the presence of one or more FDG-avid lesions on a diagnostic FDG-PET/CT scan. Protein profiles identified patients with skeletal disease at diagnosis and showed disrupted cellular pathways, including immune system processes, cell adhesion, and cell growth/survival. Immunohistochemical evaluation also demonstrated differential expressions of angiotensin-converting enzyme (ACE), intercellular adhesion molecule 3 (ICAM3), integrin alpha-X (ITGAX), and calreticulin (CALR). In conclusion, proteomics identified altered protein expression profiles in lymph nodes among CHL cases presenting with disease disseminated to the skeletal system, which implies altered disease pathogenesis for these patients.
RESUMO
OBJECTIVES: To identify molecular pathways and prognostic- and diagnostic plasma-protein biomarkers for diabetic retinopathy at various stages. METHODS: This exploratory, cross-sectional proteomics study involved plasma from 68 adults, including 15 healthy controls and 53 diabetes patients for various stages of diabetic retinopathy: non-diabetic retinopathy, non-proliferative diabetic retinopathy, proliferative diabetic retinopathy and diabetic macular edema. Plasma was incubated with peptide library beads and eluted proteins were tryptic digested, analyzed by liquid chromatography-tandem mass-spectrometry followed by bioinformatics. RESULTS: In the 68 samples, 248 of the 731 identified plasma-proteins were present in all samples. Analysis of variance showed differential expression of 58 proteins across the five disease subgroups. Protein-Protein Interaction network (STRING) showed enrichment of various pathways during the diabetic stages. In addition, stage-specific driver proteins were detected for early and advanced diabetic retinopathy. Hierarchical clustering showed distinct protein profiles according to disease severity and disease type. CONCLUSIONS: Molecular pathways in the cholesterol metabolism, complement system, and coagulation cascade were enriched in patients at various stages of diabetic retinopathy. The peroxisome proliferator-activated receptor signaling pathway and systemic lupus erythematosus pathways were enriched in early diabetic retinopathy. Stage-specific proteins for early - and advanced diabetic retinopathy as determined herein could be 'key' players in driving disease development and potential 'target' proteins for future therapies. For type 1 and 2 diabetes mellitus, the proteomic profiles were especially distinct during the early disease stage. Validation studies should aim to clarify the role of the detected molecular pathways, potential biomarkers, and potential 'target' proteins for future therapies in diabetic retinopathy.
Assuntos
Biomarcadores , Proteínas Sanguíneas , Retinopatia Diabética , Proteômica , Humanos , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/sangue , Retinopatia Diabética/metabolismo , Biomarcadores/sangue , Proteômica/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo , Prognóstico , Adulto , Estudos Transversais , Espectrometria de Massas em Tandem , Idoso , Mapas de Interação de ProteínasRESUMO
Circadian oscillators, defined by cellular 24 h clock gene rhythms, are found throughout the brain. Cerebral cortex-specific conditional knockout of the clock gene Bmal1 (Bmal1 CKO) leads to depressive-like behavior, but the molecular link from clock gene to altered behavior is unknown. Further, diurnal proteomic data on the cerebral cortex are currently unavailable. With the aim of determining the diurnal proteome profile and downstream targets of the cortical circadian clock, we here performed a proteomic analysis of the mouse cerebral cortex. Proteomics identified approximately 2700 proteins in both the neocortex and the hippocampus. In the neocortex, 15 proteins were differentially expressed (>2-fold) between day and night, mainly mitochondrial and neuronal plasticity proteins. Only three hippocampal proteins were differentially expressed, suggesting that daily protein oscillations are more prominent in the neocortex. The number of differentially expressed proteins was reduced in the Bmal1 CKO, suggesting that daily rhythms in the cerebral cortex are primarily driven by local clocks. The proteome of the Bmal1 CKO cerebral cortex was dominated by upregulated proteins expressed in astrocytes, including GFAP (4-fold) and FABP7 (>20-fold), in both the neocortex and hippocampus. These findings were confirmed at the transcript level. Cellular analyses of astrocyte components revealed an increased number of GFAP-positive cells in the Bmal1 CKO cerebral cortex. Further, BMAL1 was found to be expressed in both GFAP- and FABP7-positive astrocytes of control animals. Our data show that Bmal1 is required for proper cellular composition of the cerebral cortex, suggesting that increased cortical astrocyte activity may induce behavioral changes.
Assuntos
Relógios Circadianos , Neocórtex , Animais , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Astrócitos/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Hipocampo/metabolismo , Neocórtex/metabolismo , Proteoma/metabolismo , ProteômicaRESUMO
Membrane transport proteins are essential for the transport of a wide variety of molecules across the cell membrane to maintain cellular homeostasis. Generally, these transport proteins can be overexpressed in a suitable host (bacteria, yeast, or mammalian cells), and it is well documented that overexpression of membrane proteins alters the global metabolomic and proteomic profiles of the host cells. In the present study, we investigated the physiological consequences of overexpression of a membrane transport protein YdgR that belongs to the POT/PTR family from E. coli by using the lab strain BL21 (DE3)pLysS in its functional and attenuated mutant YdgR-E33Q. We found significant differences between the omics (metabolomics and proteomics) profiles of the cells expressing functional YdgR as compared to cells expressing attenuated YdgR, e.g., upregulation of several uncharacterized y-proteins and enzymes involved in the metabolism of peptides and amino acids. Furthermore, molecular network analysis suggested a relatively higher presence of proline-containing tripeptides in cells expressing functional YdgR. We envisage that an in-depth investigation of physiological alterations due to protein over-expression may be used for the deorphanization of the y-gene transportome.
Assuntos
Proteínas de Escherichia coli , Escherichia coli , Animais , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteômica , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Recombinantes/metabolismo , Mamíferos/metabolismoRESUMO
Retinal artery occlusion (RAO) is a devastating condition with no effective treatment. The management of RAO could potentially be improved through an in-depth understanding of the molecular alterations in the condition. This study combined advanced proteomic techniques and an experimental model to uncover the retinal large-scale protein profile of RAO. In 13 pigs, RAO was induced with an argon laser and confirmed by fluorescein angiography. Left eyes serving as controls received a sham laser without inducing occlusion. Retinal samples were collected after one, three, or six days and analyzed with liquid chromatography-tandem mass spectrometry. In RAO, 36 proteins were differentially regulated on day one, 86 on day three, and 557 on day six. Upregulated proteins included clusterin, vitronectin, and vimentin, with several proteins increasing over time with a maximum on day six, including clusterin, vimentin, osteopontin, annexin-A, signal transducer, and the activator of transcription 3. On day six, RAO resulted in the upregulation of proteins involved in cellular response to stress, hemostasis, innate immune response, and cytokine signaling. Downregulated proteins were involved in transmission across chemical synapses and visual phototransduction. This study identified the upregulation of multiple inflammatory proteins in RAO and the downregulation of proteins involved in visual pathways.
Assuntos
Clusterina , Oclusão da Artéria Retiniana , Animais , Suínos , Vimentina/genética , Proteômica/métodos , RetinaRESUMO
Follicular lymphoma (FL) is a lymphoid neoplasia characterized by an indolent clinical nature. Despite generally favorable prognoses, early progression and histological transformation (HT) to a more aggressive lymphoma histology remain the leading causes of death among FL patients. To provide a basis for possible novel treatment options, we set out to evaluate the expression levels of indoleamine 2,3-dioxygenase 1 (IDO1), an immunoinhibitory checkpoint molecule, in follicular and transformed follicular biopsies. The expression levels of IDO1 were assessed using immunohistochemical staining and digital image analysis in lymphoma biopsies from 33 FL patients without subsequent HT (non-transforming FL, nt-FL) and 20 patients with subsequent HT (subsequently transforming FL, st-FL) as well as in paired high-grade biopsies from the time of HT (transformed FL, tFL). Despite no statistical difference in IDO1 expression levels seen between the groups, all diagnostic and transformed lymphomas exhibited positive expression, indicating its possible role in novel treatment regimens. In addition, IDO1 expression revealed a positive correlation with another immune checkpoint inhibitor, namely programmed death 1 (PD-1). In summary, we report IDO1 expression in all cases of FL and tFL, which provides the grounds for future investigations of anti-IDO1 therapy as a possible treatment for FL patients.
Assuntos
Dioxigenases , Linfoma Folicular , Humanos , Biópsia , Linfoma Folicular/diagnóstico , Linfoma Folicular/genética , Recidiva Local de NeoplasiaRESUMO
Meibomian gland dysfunction (MGD) is a highly prevalent condition and the most common cause of evaporative dry eye disease. Studying the proteome of MGD can result in important advances in the management of the condition. Here, we collected tear film samples from treatment naïve patients with MGD (n = 10) and age-matched controls (n = 11) with Schirmer filtration paper. The samples were analyzed with label-free quantification nano liquid chromatography-tandem mass spectrometry. The proteins were considered differentially expressed if p < 0.05. A total of 88 proteins were significantly regulated. The largest change was observed in cystatin-SN, which was downregulated in MGD and correlated negatively with tear meniscus height. The downregulation of cystatin-SN was confirmed with targeted mass spectrometry by single reaction monitoring (SRM). Eighteen immunoglobulin components involved in B cell activation, phagocytosis, and complement activation were downregulated in MGD including Ig alpha-1 chain C region, immunoglobulin J chain, immunoglobulin heavy variable 3-15, and Ig mu chain C region. The changes in cystatin-SN and immunoglobulin chains are likely to result from the inflammatory changes related to tear film evaporation, and future studies may assess their association with the meibum quality.
Assuntos
Doenças Palpebrais , Disfunção da Glândula Tarsal , Humanos , Doenças Palpebrais/metabolismo , Subunidades de Imunoglobulinas/metabolismo , Imunoglobulinas/metabolismo , Disfunção da Glândula Tarsal/metabolismo , Glândulas Tarsais/metabolismo , Cistatinas Salivares/metabolismo , Lágrimas/metabolismoRESUMO
Retinal vein occlusion (RVO) is a frequent visually disabling condition. The management of RVO continues to challenge clinicians. Macular edema secondary to RVO is often recurrent, and patients typically require intravitreal injections for several years. Understanding molecular mechanisms in RVO is a key element in improving the treatment of the condition. Studying the molecular mechanisms in RVO at the retinal level is possible using animal models of experimental RVO. Most studies of experimental RVO have been sporadic, using only a few animals per experiment. Here, we report on 10 years of experience of the use of argon laser-induced experimental RVO in 108 porcine eyes from 65 animals, including 65 eyes with experimental branch retinal vein occlusion (BRVO) and 43 eyes with experimental central retinal vein occlusion (CRVO). Reproducibility and methods for evaluating and controlling ischemia in experimental RVO are reviewed. Methods for studying protein changes in RVO are discussed in detail, including proteomic analysis, Western blotting, and immunohistochemistry. Experimental RVO has brought significant insights into molecular changes in RVO. Testing intravitreal interventions in experimental RVO may be a significant step in developing personalized therapeutic approaches for patients with RVO.
Assuntos
Oclusão da Veia Retiniana , Animais , Suínos , Oclusão da Veia Retiniana/complicações , Oclusão da Veia Retiniana/tratamento farmacológico , Proteômica , Reprodutibilidade dos Testes , Retina , Lasers , Tomografia de Coerência ÓpticaRESUMO
BACKGROUND: Early detection of small cell lung cancer (SCLC) crucially demands highly reliable markers. Growing evidence suggests that extracellular vesicles carry tumor cell-specific cargo suitable as protein markers in cancer. Quantitative proteomic profiling of circulating microvesicles and exosomes can be a high-throughput platform for discovery of novel molecular insights and putative markers. Hence, this study aimed to investigate proteome dynamics of plasma-derived microvesicles and exosomes in newly diagnosed SCLC patients to improve early detection. METHODS: Plasma-derived microvesicles and exosomes from 24 healthy controls and 24 SCLC patients were isolated from plasma by either high-speed- or ultracentrifugation. Proteins derived from these extracellular vesicles were quantified using label-free mass spectrometry and statistical analysis was carried out aiming at identifying significantly altered protein expressions between SCLC patients and healthy controls. Furthermore, significantly expressed proteins were subjected to functional enrichment analysis to identify biological pathways implicated in SCLC pathogenesis. RESULTS: Based on fold change (FC) ≥ 2 or ≤ 0.5 and AUC ≥ 0.70 (p < 0.05), we identified 10 common and 16 and 17 unique proteins for microvesicles and exosomes, respectively. Among these proteins, we found dysregulation of coagulation factor XIII A (Log2 FC = - 1.1, p = 0.0003, AUC = 0.82, 95% CI: 0.69-0.96) and complement factor H-related protein 4 (Log2 FC = 1.2, p = 0.0005, AUC = 0.82, 95% CI; 0.67-0.97) in SCLC patients compared to healthy individuals. Our data may indicate a novel tumor-suppressing role of blood coagulation and involvement of complement activation in SCLC pathogenesis. CONCLUSIONS: In comparing SCLC patients and healthy individuals, several differentially expressed proteins were identified. This is the first study showing that circulating extracellular vesicles may encompass specific proteins with potential diagnostic attributes for SCLC, thereby opening new opportunities as novel non-invasive markers.
RESUMO
Central retinal vein occlusion (CRVO) is a visually disabling condition resulting from a thrombus in the major outflow vessel of the eye. The inflammatory response in CRVO is effectively treated with a dexamethasone (DEX) intravitreal implant. Uncovering the proteome changes following DEX implant intervention in CRVO may identify key proteins that mediate the beneficial effects of DEX. In six Göttingen minipigs, CRVO was induced in both eyes with an argon laser using a well-established experimental model. The right eyes were treated with a DEX intravitreal implant (Ozurdex, Allergan), while the left control eyes received a sham injection. Eight weeks after DEX intervention, retinal samples were collected and analyzed with tandem mass tag-based mass spectrometry. DEX implant intervention resulted in the upregulation of peptidyl-prolyl cis-trans isomerase FKBP5 (FKBP5) and ubiquilin-4. Immunohistochemistry showed expression of FKBP5 in the nuclei in all cellular layers of the retina. Cell adhesion molecule 3, tumor necrosis factor receptor superfamily member 16, and trans-1,2-dihydrobenzene-1,2-diol dehydrogenase were downregulated following DEX intervention. The upregulation of the corticosteroid-sensitive protein FKBP5 suggests that the implant remained active at the molecular level after eight weeks of treatment. Future studies may investigate if FKBP5 regulates the efficacy and duration of the DEX implant.
Assuntos
Oclusão da Veia Retiniana , Animais , Dexametasona/farmacologia , Implantes de Medicamento , Glucocorticoides/farmacologia , Oclusão da Veia Retiniana/tratamento farmacológico , Oclusão da Veia Retiniana/metabolismo , Suínos , Porco Miniatura , Tomografia de Coerência Óptica , Resultado do Tratamento , Acuidade VisualRESUMO
Aflibercept is a frequently used inhibitor of vascular endothelial growth factor (VEGF) in the treatment of macular edema following central retinal vein occlusion (CRVO). Retinal proteome changes following aflibercept intervention in CRVO remain largely unstudied. Studying proteomic changes of aflibercept intervention may generate a better understanding of mechanisms of action and uncover aspects related to the safety profile. In 10 Danish Landrace pigs, CRVO was induced in both eyes with an argon laser. Right eyes were treated with intravitreal aflibercept while left control eyes received isotonic saline water. Retinal samples were collected 15 days after induced CRVO. Proteomic analysis by tandem mass tag-based mass spectrometry identified a total of 21 proteins that were changed in content following aflibercept intervention. In retinas treated with aflibercept, high levels of aflibercept components were reached, including the VEGF receptor-1 and VEGF receptor-2 domains. Fold changes in the additional proteins ranged between 0.70 and 1.19. Aflibercept intervention resulted in a downregulation of pigment epithelium-derived factor (PEDF) (fold change = 0.84) and endoplasmin (fold change = 0.91). The changes were slight and could thereby not be confirmed with less precise immunohistochemistry and Western blotting. Our data suggest that aflibercept had a narrow mechanism of action in the CRVO model. This may be an important observation in cases when macular edema secondary to CRVO is resistant to aflibercept intervention.
Assuntos
Edema Macular , Oclusão da Veia Retiniana , Inibidores da Angiogênese/farmacologia , Animais , Injeções Intravítreas , Edema Macular/complicações , Edema Macular/etiologia , Proteoma , Proteômica , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão/farmacologia , Oclusão da Veia Retiniana/complicações , Oclusão da Veia Retiniana/tratamento farmacológico , Oclusão da Veia Retiniana/metabolismo , Suínos , Fator A de Crescimento do Endotélio Vascular , Acuidade VisualRESUMO
Colorectal cancer (CRC) is one of the leading causes of cancer-related death over the world. There is a great need for biomarkers capable of early detection and as targets for treatment. Differential protein expression was investigated with two-dimensional gel electrophoresis (2D-PAGE) followed by identification with liquid chromatography-tandem mass spectrometry (LC-MS/MS) in CRC patient tissue from (i) the peripheral part of the tumor, (ii) the central part of the tumor as well as from (iii) a non-involved part of the colorectal tissue. The expression patterns of six identified proteins were further evaluated by one-dimensional Western blot (1D-WB) analysis of the CRC tissue. Proteins that were perturbed in expression level in the peripheral or in the central part of the tumor as compared with the non-involved part included S100A11, HNRNPF, HNRNPH1 or HNRNPH2, GSTP1, PKM and FABP1. These identified markers may have future diagnostic potential or may be novel treatment targets after further evaluation in larger patient cohorts.
Assuntos
Adenocarcinoma/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/metabolismo , Proteoma , Proteômica/métodos , Adenocarcinoma/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Cromatografia Líquida , Neoplasias Colorretais/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas em TandemRESUMO
Proteomics has gone through tremendous development during recent decades [...].
Assuntos
Descoberta de Drogas , Proteômica , HumanosRESUMO
In the western world, colorectal cancer (CRC) is the third most common cause of cancer-related deaths. Survival is closely related to the stage of cancer at diagnosis striking the clinical need for biomarkers capable of early detection. To search for possible biological parameters for early diagnosis of CRC we evaluated protein expression for three CREC (acronym: Cab45, reticulocalbin, ERC-55, calumenin) proteins: reticulocalbin, calumenin, and ERC-55 in a cellular model consisting of a normal derived colon mucosa cell line, NCM460, and a primary adenocarcinoma cell line of the colon, SW480. Furthermore, this cellular model was analyzed by a top-down proteomic approach, 2-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for novel putative diagnostic markers by identification of differentially expressed proteins between the two cell lines. A different colorectal carcinoma cell line, HCT 116, was used in a bottom-up proteomic approach with label-free quantification (LFQ) LC-MS/MS. The two cellular models gave sets of putative diagnostic CRC biomarkers. Various of these novel putative markers were verified with increased expression in CRC patient neoplastic tissue compared to the expression in a non-involved part of the colon, including reticulocalbin, calumenin, S100A6 and protein SET. Characterization of these novel identified biological features for CRC patients may have diagnostic potential and therapeutic relevance in this malignancy characterized by a still unmet clinical need.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Mucosa Intestinal/metabolismo , Proteoma/genética , Idoso , Idoso de 80 Anos ou mais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , Neoplasias Colorretais/patologia , Proteínas de Ligação a DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Chaperonas de Histonas/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteína A6 Ligante de Cálcio S100/genéticaRESUMO
Posthepatectomy liver failure (PHLF) may occur after extended partial hepatectomy (PH). If malignancy is widespread in the liver, the size of PH and hence the size of the future liver remnant (FLR) may limit curability. We aimed to characterize differences in protein expression between different sizes of FLRs and identify proteins specific to the regenerative process of minimal-size FLR (MSFLR), with special focus on postoperative day (POD) 1 when PHLF is present. A total of 104 male Wistar rats were subjected to 30, 70, or 90% PH (MSFLR in rats), sham operation, or no operation. Blood and liver tissue were harvested at POD1, 3, and 5 (n = 8 per group). Protein expression was assessed by proteomic profiling by unsupervised two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) liquid chromatography tandem mass spectrometry (LC-MS/MS), followed by supervised selected reaction monitoring (SRM)-MS/MS. In all, 1,035 protein spots were detected, 54 of which were significantly differentially expressed between groups and identifiable. During PHLF after PH(90%) at POD1, urea cycle and related proteins showed significant perturbations, including the urea cycle flux-regulating enzyme of carbamoyl phosphate synthase-1, ornithine transcarbamylase, and arginase-1, as well as the ornithine aminotransferase and propionyl-CoA carboxylase alpha chain. Plasma-ammonia increased significantly at POD1 after PH(90%), followed by a prompt decrease. At the protein level, we found perturbations of urea cycle and related enzymes in the MSFLR during PHLF. Our results suggest that these perturbations may augment urea cycle function, which may be pivotal for increased ammonia elimination after extensive PHs and potential PHLF.NEW & NOTEWORTHY Posthepatectomy liver failure (PHLF) is associated with high mortality. In a rat model of 90% hepatectomy, PHLF is present. Our results on liver tissue proteomics suggest that the ability of the liver remnant to sufficiently eliminate ammonia may be brought about by perturbation related to urea cycle proteins and that enhancing the urea cycle capacity may play a key role in surviving PHLF.
Assuntos
Hepatectomia , Falência Hepática/metabolismo , Distúrbios Congênitos do Ciclo da Ureia/metabolismo , Amônia/sangue , Animais , Biologia Computacional , Expressão Gênica , Falência Hepática/genética , Masculino , Biossíntese de Proteínas , Proteômica , RNA Mensageiro/biossíntese , Ratos , Ratos Wistar , Distúrbios Congênitos do Ciclo da Ureia/genéticaRESUMO
Few data exist regarding the protein composition of idiopathic epiretinal membrane (iERM). In the present study we compared the proteome of epiretinal membrane of iERM with the proteome of the inner limiting membrane (ILM) of idiopathic macular hole (iMH). Twelve epiretinal membrane samples were obtained from patients with iERM undergoing therapeutic vitrectomy. Twelve ILM samples from patients with iMH were used as controls. Proteomic analysis was conducted with discovery-based label-free quantitative nano-liquid chromatography - tandem mass spectrometry (LFQ nLC-MS/MS). Verification of results was performed with targeted MS using selected reaction monitoring on a different set of samples. Discovery data were searched against the Uniprot Homo sapiens protein database using MaxQuant Software. Identified proteins were filtered with Perseus software. Bioinformatic analysis of the differences in protein expression between epiretinal membrane from iERM and ILM from iMH was performed using STRING. A total of 2,183 different proteins were identified. 357 proteins were found to be present in all samples. The protein profile of iERM was highly different from iMH with 62 proteins found at significantly higher levels in iERM. The proteins upregulated more than 10-fold in iERM were: fibrillin-1, tenascin, prolargin, biglycan, opticin, collagen alpha-1(II) chain, protein-glutamine gamma-glutamyltransferase 2, fibronectin, filamin-A, collagen alpha-2(IX) chain, spectrin alpha chain, transforming growth factor beta induced protein ig-h3, dihydropyrimidinase - related protein 3, endoplasmin and glutamate dehydrogenase 1. Proteins with high level in iERM consisted of proteins that especially localized to the actin cytoskeleton, the extracellular matrix and the mitochondrion. Analysis of all proteins indicated that the disease process in iERM at least in part can be characterized as skin formation with perturbation of nucleotide metabolism. Our study identified proteins that have not earlier been associated with iERM. Fifteen proteins are found at very high concentration, 10-fold or more, and amongst these four proteins, fibrillin-1, tenascin, prolargin and biglycan were found at more than a 100-fold higher content compared to ILM of iMH. These proteins may be potential therapeutic targets. Data are available via ProteomeXchange with identifier PXD014286.
Assuntos
Membrana Basal/metabolismo , Membrana Epirretiniana/metabolismo , Proteínas do Olho/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica/métodosRESUMO
Purpose: To identify retinal protein changes that mediate beneficial effects of intravitreal bevacizumab in experimental branch retinal vein occlusion (BRVO). Methods: In six Danish Landrace pigs, BRVO was induced with argon laser in both eyes. After BRVO was induced, the right eye of each animal was given an intravitreal injection of bevacizumab while the left eye was treated with saline water. The retinas were collected 15 days after BRVO, and differentially expressed proteins were analyzed with tandem mass tags-based mass spectrometry. Validation of statistically significantly changed proteins was performed with immunohistochemistry and western blotting. Results: Fluorescein angiography showed no recanalization of the occluded vessels. A total of 4,013 proteins were successfully identified and quantified. Nine proteins were statistically significantly changed following bevacizumab intervention. In experimental BRVO, bevacizumab treatment resulted in upregulation of transthyretin (TTR) and pantothenate kinase 3. Bevacizumab downregulated protocadherin 7, protein FAM192A, and ATP synthase protein 8. Immunohistochemistry revealed that TTR was highly abundant in the choroid following bevacizumab intervention. Conclusions: Bevacizumab intervention in experimental BRVO resulted in an increased level of TTR. This is the second study in which we showed an increased retinal level of TTR following anti-vascular endothelial growth factor (VEGF) intervention in experimental BRVO. We hypothesize that there is an interaction between TTR and VEGF and that bevacizumab may exert a beneficial effect on the retina by upregulating TTR.
Assuntos
Inibidores da Angiogênese/farmacologia , Bevacizumab/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Pré-Albumina/genética , Retina/efeitos dos fármacos , Oclusão da Veia Retiniana/tratamento farmacológico , Animais , Caderinas/antagonistas & inibidores , Caderinas/genética , Caderinas/metabolismo , Corioide/irrigação sanguínea , Corioide/diagnóstico por imagem , Corioide/efeitos dos fármacos , Corioide/metabolismo , Angiofluoresceinografia , Perfilação da Expressão Gênica , Humanos , Cadeias gama de Imunoglobulina/genética , Cadeias gama de Imunoglobulina/metabolismo , Cadeias kappa de Imunoglobulina/genética , Cadeias kappa de Imunoglobulina/metabolismo , Injeções Intravítreas , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Pré-Albumina/agonistas , Pré-Albumina/metabolismo , Retina/diagnóstico por imagem , Retina/metabolismo , Retina/patologia , Oclusão da Veia Retiniana/diagnóstico por imagem , Oclusão da Veia Retiniana/genética , Oclusão da Veia Retiniana/patologia , SuínosRESUMO
A dexamethasone (DEX) intravitreal implant (OZURDEX) provides an effective treatment of inflammation secondary to branch retinal vein occlusion (BRVO). Retinal proteome changes which mediate the beneficial effects of the implant remain poorly understood. To study retinal proteome changes in BRVO following an intervention with a DEX implant this study combined an experimental model of BRVO with proteomic techniques. In eight Danish Landrace pigs experimental BRVO was induced in both eyes using argon laser. After inducing BRVO a DEX implant was injected into the right eye of each animal while the left control eye was given an identical injection without an implant. Fifteen days after BRVO and DEX implant intervention the retinas were excised and analyzed with tandem mass tag based mass spectrometry. A total of 26 significantly changed proteins were identified. DEX intervention reduced the retinal levels of platelet-derived growth factor receptor-α (PDGFR-α) and vascular endothelial growth factor receptor 2 (VEGFR-2). DEX treatment resulted in increased levels of caveolin-1, peptidyl-prolyl cis-trans isomerase FKBP5 and transgelin. Changes in PDGFR-α and caveolin-1 were confirmed with immunohistochemistry. In BRVO treated with the DEX implant a strong reaction for caveolin-1 was observed in the innermost retinal layers. DEX implant intervention may inhibit PDGF signaling by decreasing the retinal level of PDGFR-α while an increased content of caveolin-1 may help maintain the integrity of the blood-retinal barrier.