Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Oncogene ; 41(14): 2106-2121, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35190641

RESUMO

Recurrent cytogenetic abnormalities are the main hallmark of multiple myeloma (MM) and patients having 2 or more high-risk prognostic events are associated with extremely poor outcome. 17p13(del) and 1q21(gain) are critical and independent high-risk cytogenetic markers, however, the biological significance underlying the poor outcome in MM patients having co-occurrence of both these chromosomal aberrations has never been interrogated. Herein, we identified that patients harbouring concomitant 17p13(del) with 1q21(gain) demonstrated the worst prognosis as compared to patients with single- (either 17p13(del) or 1q21(gain)) and with no chromosomal events (WT for both chromosomal loci); and they are highly enriched for genomic instability (GI) signature. We discovered that the GI feature in the patients with concomitant 17p13(del)-1q21(gain) was recapitulating the biological properties of myeloma cells with co-existing p53-deficiency and NEIL1 mRNA-hyper-editing (associated with chromosome 17p and 1q, respectively) that have inherent DNA damage response (DDR) and persistent activation of Chk1 pathway. Importantly, this became a vulnerable point for therapeutic targeting whereby the cells with this co-abnormalities demonstrated hyper-sensitivity to siRNA- and pharmacological-mediated-Chk1 inhibition, as observed at both the in vitro and in vivo levels. Mechanistically, this was attributable to the synthetic lethal relationship between p53-NEIL1-Chk1 abnormalities. The Chk1 inhibitor (AZD7762) tested showed good synergism with standard-of-care myeloma drugs, velcade and melphalan, thus further reinforcing the translational potential of this therapeutic approach. In summary, combination of NEIL1-p53 abnormalities with an ensuing Chk1 activation could serve as an Achilles heel and predispose MM cells with co-existing 1q21(gain) and 17p13(del) to therapeutic vulnerability for Chk1 inhibition.


Assuntos
Quinase 1 do Ponto de Checagem , DNA Glicosilases , Mieloma Múltiplo , Proteína Supressora de Tumor p53 , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/genética , Aberrações Cromossômicas , Deleção Cromossômica , DNA Glicosilases/genética , Instabilidade Genômica , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mutações Sintéticas Letais , Proteína Supressora de Tumor p53/genética
2.
Oncogene ; 41(13): 1986-2002, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236967

RESUMO

Inhibitors of the mitotic kinase PLK1 yield objective responses in a subset of refractory cancers. However, PLK1 overexpression in cancer does not correlate with drug sensitivity, and the clinical development of PLK1 inhibitors has been hampered by the lack of patient selection marker. Using a high-throughput chemical screen, we discovered that cells deficient for the tumor suppressor ARID1A are highly sensitive to PLK1 inhibition. Interestingly this sensitivity was unrelated to canonical functions of PLK1 in mediating G2/M cell cycle transition. Instead, a whole-genome CRISPR screen revealed PLK1 inhibitor sensitivity in ARID1A deficient cells to be dependent on the mitochondrial translation machinery. We find that ARID1A knock-out (KO) cells have an unusual mitochondrial phenotype with aberrant biogenesis, increased oxygen consumption/expression of oxidative phosphorylation genes, but without increased ATP production. Using expansion microscopy and biochemical fractionation, we see that a subset of PLK1 localizes to the mitochondria in interphase cells. Inhibition of PLK1 in ARID1A KO cells further uncouples oxygen consumption from ATP production, with subsequent membrane depolarization and apoptosis. Knockdown of specific subunits of the mitochondrial ribosome reverses PLK1-inhibitor induced apoptosis in ARID1A deficient cells, confirming specificity of the phenotype. Together, these findings highlight a novel interphase role for PLK1 in maintaining mitochondrial fitness under metabolic stress, and a strategy for therapeutic use of PLK1 inhibitors. To translate these findings, we describe a quantitative microscopy assay for assessment of ARID1A protein loss, which could offer a novel patient selection strategy for the clinical development of PLK1 inhibitors in cancer.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Neoplasias , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Fatores de Transcrição , Trifosfato de Adenosina/metabolismo , Apoptose , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Consumo de Oxigênio , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Quinase 1 Polo-Like
3.
Sci Transl Med ; 14(667): eabn7824, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36260690

RESUMO

Although combination therapy is the standard of care for relapsed/refractory non-Hodgkin's lymphoma (RR-NHL), combination treatment chosen for an individual patient is empirical, and response rates remain poor in individuals with chemotherapy-resistant disease. Here, we evaluate an experimental-analytic method, quadratic phenotypic optimization platform (QPOP), for prediction of patient-specific drug combination efficacy from a limited quantity of biopsied tumor samples. In this prospective study, we enrolled 71 patients with RR-NHL (39 B cell NHL and 32 NK/T cell NHL) with a median of two prior lines of treatment, at two academic hospitals in Singapore from November 2017 to August 2021. Fresh biopsies underwent ex vivo testing using a panel of 12 drugs with known efficacy against NHL to identify effective single and combination treatments. Individualized QPOP reports were generated for 67 of 75 patient samples, with a median turnaround time of 6 days from sample collection to report generation. Doublet drug combinations containing copanlisib or romidepsin were most effective against B cell NHL and NK/T cell NHL samples, respectively. Off-label QPOP-guided therapy offered at physician discretion in the absence of standard options (n = 17) resulted in five complete responses. Among patients with more than two prior lines of therapy, the rates of progressive disease were lower with QPOP-guided treatments than with conventional chemotherapy. Overall, this study shows that the identification of patient-specific drug combinations through ex vivo analysis was achievable for RR-NHL in a clinically applicable time frame. These data provide the basis for a prospective clinical trial evaluating ex vivo-guided combination therapy in RR-NHL.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Linfoma não Hodgkin , Humanos , Estudos Prospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Linfoma não Hodgkin/tratamento farmacológico , Combinação de Medicamentos
4.
EMBO Mol Med ; 13(5): e13366, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33709473

RESUMO

Early relapse after platinum chemotherapy in epithelial ovarian cancer (EOC) portends poor survival. A-priori identification of platinum resistance is therefore crucial to improve on standard first-line carboplatin-paclitaxel treatment. The DNA repair pathway homologous recombination (HR) repairs platinum-induced damage, and the HR recombinase RAD51 is overexpressed in cancer. We therefore designed a REMARK-compliant study of pre-treatment RAD51 expression in EOC, using fluorescent quantitative immunohistochemistry (qIHC) to overcome challenges in quantitation of protein expression in situ. In a discovery cohort (n = 284), RAD51-High tumours had shorter progression-free and overall survival compared to RAD51-Low cases in univariate and multivariate analyses. The association of RAD51 with relapse/survival was validated in a carboplatin monotherapy SCOTROC4 clinical trial cohort (n = 264) and was predominantly noted in HR-proficient cancers (Myriad HRDscore < 42). Interestingly, overexpression of RAD51 modified expression of immune-regulatory pathways in vitro, while RAD51-High tumours showed exclusion of cytotoxic T cells in situ. Our findings highlight RAD51 expression as a determinant of platinum resistance and suggest possible roles for therapy to overcome immune exclusion in RAD51-High EOC. The qIHC approach is generalizable to other proteins with a continuum instead of discrete/bimodal expression.


Assuntos
Neoplasias Ovarianas , Platina , Carcinoma Epitelial do Ovário/tratamento farmacológico , Feminino , Humanos , Recidiva Local de Neoplasia , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel , Rad51 Recombinase/genética
5.
Leuk Lymphoma ; 60(13): 3214-3224, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31259656

RESUMO

Polo-like kinase-1 (PLK1) regulates the MYC-dependent kinome in aggressive B-cell lymphoma. However, the role of PLK1 and MYC toward proliferation in diffuse large B-cell lymphoma (DLBCL) is unknown. We use multiplexed fluorescent immunohistochemistry (fIHC) to evaluate the co-localization of MYC, PLK1 and Ki67 to study their association with proliferation in DLBCL. The majority (98%, 95% CI 95-100%) of MYC/PLK1-double positive tumor cells expressed Ki67, underscoring the key role of the MYC/PLK1 circuit in proliferation. However, only 38% (95% CI 23-40%) and 51% (95% CI 46-51%) of Ki67-positive cells expressed MYC and PLK1, respectively. Notably, 40% (95% CI 26-43%) of Ki67-positive cells are MYC- and PLK-negative. A stronger correlation exists between PLK1 and Ki67 expression (R = 0.74, p < .001) than with MYC and Ki67 expression (R = 0.52, p < .001). Overall, the results indicate that PLK1 has a higher association than MYC in DLBCL proliferation and there are mechanisms besides MYC and PLK1 influencing DLBCL proliferation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Antígeno Ki-67/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ciclo Celular/análise , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Antígeno Ki-67/análise , Proteínas Serina-Treonina Quinases/análise , Proteínas Proto-Oncogênicas/análise , Proteínas Proto-Oncogênicas c-myc/análise , Software , Quinase 1 Polo-Like
6.
J Natl Cancer Inst ; 110(7): 704-713, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788099

RESUMO

Defective DNA repair is a common hallmark of cancer. Homologous recombination is a DNA repair pathway of clinical interest due to the sensitivity of homologous recombination-deficient cells to poly-ADP ribose polymerase (PARP) inhibitors. The measurement of homologous recombination deficiency (HRD) in cancer is therefore vital to the appropriate design of clinical trials incorporating PARP inhibitors. However, methods to identify HRD in tumors are varied and controversial. Understanding existing and new methods to measure HRD is important to their appropriate use in clinical trials and practice. The aim of this review is to summarize the biology and clinical validation of current methods to measure HRD, to aid decision-making for patient stratification and translational research in PARP inhibitor trials. We discuss the current clinical development of PARP inhibitors, along with established indicators for HRD such as germline BRCA1/2 mutation status and clinical response to platinum-based therapy. We then examine newer assays undergoing clinical validation, including 1) somatic mutations in homologous recombination genes, 2) "genomic scar" assays using array-based comparative genomic hybridization (aCGH), single nucleotide polymorphism (SNP) analysis or mutational signatures derived from next-generation sequencing, 3) transcriptional profiles of HRD, and 4) phenotypic or functional assays of protein expression and localization. We highlight the strengths and weaknesses of each of these assays, for consideration during the design of studies involving PARP inhibitors.


Assuntos
Biomarcadores Tumorais , Distúrbios no Reparo do DNA/diagnóstico , Recombinação Homóloga/genética , Neoplasias/genética , Biomarcadores Tumorais/genética , Reparo do DNA/genética , Distúrbios no Reparo do DNA/genética , Técnicas de Apoio para a Decisão , Testes Genéticos/métodos , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Seleção de Pacientes , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Estudos de Validação como Assunto
8.
Oncotarget ; 7(34): 55290-55301, 2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27421133

RESUMO

Early detection of gastric cancers saves lives, but remains a diagnostic challenge. In this study, we aimed to identify cell-surface biomarkers of early gastric cancer. We hypothesized that a subset of plasma membrane proteins induced by the Helicobacter pylori oncoprotein CagA will be retained in early gastric cancers through non-oncogene addiction. An inducible system for expression of CagA was used to identify differentially upregulated membrane protein transcripts in vitro. The top hits were then analyzed in gene expression datasets comparing transcriptome of gastric cancer with normal tissue, to focus on markers retained in cancer. Among the transcripts enriched upon CagA induction in vitro, a significant elevation of CEACAM6 was noted in gene expression datasets of gastric cancer. We used quantitative digital immunohistochemistry to measure CEACAM6 protein levels in tissue microarrays of gastric cancer. We demonstrate an increase in CEACAM6 in early gastric cancers, when compared to matched normal tissue, with an AUC of 0.83 for diagnostic validity. Finally, we show that a fluorescently conjugated CEACAM6 antibody binds avidly to freshly resected gastric cancer xenograft samples and can be detected by endoscopy in real time. Together, these results suggest that CEACAM6 upregulation is a cell surface response to H. pylori CagA, and is retained in early gastric cancers. They highlight a novel link between CEACAM6 expression and CagA in gastric cancer, and suggest CEACAM6 to be a promising biomarker to aid with the fluorescent endoscopic diagnosis of early neoplastic lesions in the stomach.


Assuntos
Antígenos de Bactérias/fisiologia , Antígenos CD/análise , Proteínas de Bactérias/fisiologia , Biomarcadores Tumorais/análise , Moléculas de Adesão Celular/análise , Neoplasias Gástricas/diagnóstico , Animais , Imunofluorescência , Proteínas Ligadas por GPI/análise , Infecções por Helicobacter/metabolismo , Humanos , Camundongos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa