Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Phys Rev Lett ; 132(9): 096601, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489634

RESUMO

In this study, we performed high-magnetic-field magnetization, dielectric, and ultrasound measurements on an organic salt showing a ferroelectric spin-Peierls (FSP) state, which is in close proximity to a quantum critical point. In contrast to the sparsely distributed gaslike spin solitons typically observed in conventional spin-Peierls (SP) states, the FSP state exhibits dense liquidlike spin solitons resulting from strong quantum fluctuations, even at low fields. Nevertheless, akin to conventional SP systems, a magnetic-field-induced transition is observed in the FSP state. In conventional high-field SP states, an emergent wave vector results in the formation of a spin-soliton lattice. However, in the present high-field FSP state, the strong quantum fluctuations preclude the formation of such a soliton lattice, causing the dense solitons to remain in a quantum-mechanically melted state. This observation implies the realization of a quantum liquid-liquid transition of topological particles carrying spin and charge in a ferroelectric insulator.

2.
J Am Chem Soc ; 140(11): 3842-3845, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29505710

RESUMO

The field-induced antipolar-polar structural transition in an organic antiferroelectric 2-trifluoromethylnaphthimidazole crystal is investigated by performing synchrotron X-ray diffraction. The polarities of all of the hydrogen-bonded chains become parallel with each other in the presence of an external electric field. The switching is accompanied by a giant electrostriction, which provides 1 order of magnitude larger strain than the piezoelectric strain of the organic ferroelectrics: croconic acid and poly(vinylidene fluoride); however, it is comparable to those of typical commercial piezoelectric ceramics. The crystal structure analysis with electric field shows that the origin of the observed giant electrostriction can be attributed to the shear strain that emerges from the polarity switching of the hydrogen-bonded chains. The antipolar-polar structural transition in antiferroelectrics could be employed for the development of high-performance electrostrictive organic materials.

3.
Nature ; 463(7282): 789-92, 2010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-20148035

RESUMO

Ferroelectrics are electro-active materials that can store and switch their polarity (ferroelectricity), sense temperature changes (pyroelectricity), interchange electric and mechanical functions (piezoelectricity), and manipulate light (through optical nonlinearities and the electro-optic effect): all of these functions have practical applications. Topological switching of pi-conjugation in organic molecules, such as the keto-enol transformation, has long been anticipated as a means of realizing these phenomena in molecular assemblies and crystals. Croconic acid, an ingredient of black dyes, was recently found to have a hydrogen-bonded polar structure in a crystalline state. Here we demonstrate that application of an electric field can coherently align the molecular polarities in crystalline croconic acid, as indicated by an increase of optical second harmonic generation, and produce a well-defined polarization hysteresis at room temperature. To make this simple pentagonal molecule ferroelectric, we switched the pi-bond topology using synchronized proton transfer instead of rigid-body rotation. Of the organic ferroelectrics, this molecular crystal exhibits the highest spontaneous polarization ( approximately 20 muC cm(-2)) in spite of its small molecular size, which is in accord with first-principles electronic-structure calculations. Such high polarization, which persists up to 400 K, may find application in active capacitor and nonlinear optics elements in future organic electronics.

4.
Nano Lett ; 14(1): 239-43, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24329117

RESUMO

The switching of electric polarization induced by electric fields, a fundamental functionality of ferroelectrics, is closely associated with the motions of the domain walls that separate regions with distinct polarization directions. Therefore, understanding domain-walls dynamics is of essential importance for advancing ferroelectric applications. In this Letter, we show that the topology of the multidomain structure can have an intrinsic impact on the degree of switchable polarization. Using a combination of polarization hysteresis measurements and piezoresponse force microscopy on a uniaxial organic ferroelectric, α-6,6'-dimethyl-2,2'-bipyridinium chloranilate, we found that the head-to-head (or tail-to-tail) charged domain walls are strongly pinned and thus impede the switching process; in contrast, if the charged domain walls are replaced with electrically neutral antiparallel domain walls, bulk polarization switching is achieved. Our findings suggest that manipulation of the multidomain topology can potentially control the switchable polarization.

5.
Chemistry ; 20(52): 17515-22, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25363720

RESUMO

Three polymorphic forms of 6,6'-dimethyl-2,2'-bipyridinium chloranilate crystals were characterized to understand the origin of polarization properties and the thermal stability of ferroelectricity. According to the temperature-dependent permittivity, differential scanning calorimetry, and X-ray diffraction, structural phase transitions were found in all polymorphs. Notably, the ferroelectric α-form crystal, which has the longest hydrogen bond (2.95 Å) among the organic acid/base-type supramolecular ferroelectrics, transformed from a polar structure (space group, P21) into an anti-polar structure (space group, P21/c) at 378 K. The non-ferroelectric ß- and γ-form crystals also exhibited structural rearrangements around hydrogen bonds. The hydrogen-bonded geometry and ferroelectric properties were compared with other supramolecular ferroelectrics. A positive relationship between the phase-transition temperature (TC ) and hydrogen-bond length () was observed, and was attributed to the potential barrier height for proton off-centering or order/disorder phenomena. The optimized spontaneous polarization (Ps ) agreed well with the results of the first-principles calculations, and could be amplified by separating the two equilibrium positions of protons with increasing . These data consistently demonstrated that stretching is a promising way to enhance the polarization performance and thermal stability of hydrogen-bonded organic ferroelectrics.

6.
Adv Sci (Weinh) ; 11(13): e2308270, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38268432

RESUMO

Some rodlike organic molecules exhibit exceptionally high layered crystallinity when composed of a link between π-conjugated backbone (head) and alkyl chain (tail). These molecules are aligned side-by-side unidirectionally to form self-organized polar monomolecular layers, providing promising 2D materials and devices. However, their interlayer stacking arrangements have never been tunable, preventing the unidirectional arrangements of molecules in whole crystals. Here, it is demonstrated that polar/antipolar interlayer stacking can be systematically controlled by the alkyl carbon number n, when the molecules are designed to involve effectively weakened head-to-head affinity. They exhibit remarkable odd-even effect in the interlayer stacking: alternating head-to-head and tail-to-tail (antipolar) arrangement in odd-n crystals, and uniform head-to-tail (polar) arrangement in even-n crystals. The films show excellent field-effect transistor characteristics presenting unique polar/antipolar dependence and considerably improved subthreshold swing in the polar films. Additionally, the polar films present enhanced second-order nonlinear optical response along normal to the film plane. These findings are key for creating polarity-controlled optoelectronic materials and devices.

7.
J Am Chem Soc ; 135(11): 4492-500, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23448384

RESUMO

Cocrystallization of anilic acids (H2xa) and 2,3-di(2-pyridinyl)pyrazine (dppz) affords a variety of molecular geometries, including hydrogen-bonding and supramolecular structures. Proton-transferred 1:1 salts of [H-dppz][Hca] and [H-dppz][Hba] (H2ca = chloranilic acid, H2ba = bromanilic acid) were found to host room-temperature ferroelectricity with a spontaneous polarization of 3-4 µC/cm(2) along the hydrogen-bonded chains. Compared with the Curie points of other supramolecular ferroelectrics, those of the salts are relatively high (402 K and >420 K, respectively) because of the elongated hydrogen bonds, which stabilize the proton-ordered state against thermal agitation. In addition to the ferroelectric black (α) form, dppz and H2ba gave two different crystal forms with a 2:3 ratio: the brown ß form of [H(1.5)-dppz]2[Hba]3 and the brownish-red γ form of [H-dppz]2[Hba]2[H2ba]. Mixed solutions of dppz with the less acidic fluoranilic acid (H2fa) exhibit valence instability; the H2fa molecules remain mostly neutral in absolute ethanol, whereas methanol (MeOH) solution apparently increases the deprotonated Hfa(-) content. Crystallizations of these solutions gave a neutral [dppz][H2fa] cocrystal and ionic [H-dppz(+)][Hfa(-)]·MeOH salt, respectively. The ferroelectricity induced by a modest hydrostatic pressure corroborates the conclusion that the ionic state with a dipolar [H-dppz(+)][Hfa(-)] chain is energetically close to the nonpolar neutral ground state of the [dppz][H2fa] crystal.

8.
Phys Rev Lett ; 111(18): 187801, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24237563

RESUMO

We report a new photoinduced transition from a nonordered phase to a transient ordered phase with symmetry breaking in an organic charge-transfer compound, dimethyltetrathiafulvalene (DMTTF)-dibromodichloro-p-benzoquinone (2,6QBr(2)Cl(2)), which is a neutral compound located near the neutral-ionic phase boundary and shows quantum paraelectricity at low temperatures. By an irradiation of a femtosecond laser pulse, an ionic domain consisting of ~40 molecules is introduced into the neutral lattice per photon, giving rise to coherent molecular oscillations with fractional charge modulations over ~400 molecules. This response is due to the recovery of ferroelectric nature from the quantum paraelectricity by a photoinjection of an ionic domain with a large dipole moment.


Assuntos
Benzoquinonas/química , Compostos Heterocíclicos/química , Lasers , Transição de Fase/efeitos da radiação , Processos Fotoquímicos , Teoria Quântica , Análise Espectral Raman
9.
Mater Horiz ; 10(6): 2149-2159, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36951962

RESUMO

Switchable π-electron systems are very powerful fragments to emphasize ferroelectric or antiferroelectric polarizations up to record-high levels among organic molecular crystals. According to the Cambridge Structural Database, many azole crystals such as imidazoles and tetrazoles contain polar and bistable hydrogen-bonded molecular sequences suitable for ferroelectricity or antiferroelectricity. Indeed, polarization hysteresis experiments on the 5-phenyl-1H-tetrazole (PHTZ) family combined with single crystal structural analysis have revealed one ferroelectric, two antiferroelectrics, and two hybrid-like dielectrics. Here, the rich variations for the interrelation between the hydrogen-bonding states and the polarization switching modes are interpreted by density functional theory (DFT) calculations with an excellent consistency. Large switchable polarizations are theoretically confirmed, and, as expected, the largest contribution is the switchable π-electron systems. By mapping the energy levels of polar/antipolar states, the disordered hydrogen bonds always appear when the ground state is accompanied by a nearly degenerate state. The straightforward case is the hybrid-like dielectric caused by the competition between the polar and antipolar states. However, contrastive behaviors are observed when the switchable dipoles are involved in competition between the different antipolar arrangement. For example, the PHTZ crystal exhibits typical antiferroelectric switching regardless of the hydrogen disorder, whereas polarization switching is silent in the imidazole derivatives. The latter is explained by the switching field increase with depth of the ground state relative to the energy level of the polar state.

10.
Sci Rep ; 13(1): 8810, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258569

RESUMO

Some organic ferroelectrics have two possible switching modes: molecular reorientation and proton transfer. Typical examples include 2,5-dihydroxybenzoic acid (DHBA) and Hdabco-ReO[Formula: see text] (dabco = diazabicyclo[2.2.2]octane). The direction and amplitude of the expected polarization depends on the switching mode. Herein a straightforward method to identify the ferroelectric switching mechanism is demonstrated. First, the relationship between the polarization vectors corresponding to the two modes is illustrated using the Berry phase. Second, the theoretical background for the sign of the piezoelectric coefficient is used to decide which mode occurs. Finally, comparing the theoretically calculated piezoelectric coefficients to the experimental results confirms the switching mode of each compound.

11.
J Am Chem Soc ; 134(2): 1036-46, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22142304

RESUMO

Supramolecular ferroelectric cocrystals of phenazine (Phz) with chloranilic acid (H(2)ca), bromanilic acid (H(2)ba), and fluoranilic acid (H(2)fa) have been characterized by the interplay between their structural transformations and solid-state acid-base (proton transfer) reactions. At ambient pressure, the Phz-H(2)ca, Phz-H(2)ba, and their deuterated crystals exhibit incomplete proton displacement, which transforms the neutral molecules into semi-ionic at low temperatures below the Curie point (T(c)(IC) < T < T(c)(I)). For the cocrystal of the less acidic H(2)fa, the ferroelectric phase is induced only by applying hydrostatic pressure above ~0.6 GPa. According to the combined studies of temperature-dependent dielectric permittivity and synchrotron X-ray diffraction, it was proved that the ferroelectric (FE-I) phase is always accompanied at lower temperatures by successive phase transitions to the lattice modulated phases with incommensurate periodicities (IC phase, T(c)(II) < T < T(c)(IC)) and with commensurate (2- or 3-fold) periodicities (FE-II or FE-III phase, T < T(c)(II)). Whereas the ground-state structures at ambient pressure are different from one another among the Phz-H(2)ca (FE-II form), Phz-H(2)ba (FE-III form), and Phz-H(2)fa (paraelectric form), their systematic changes under pressure depict a universal pressure-temperature phase diagram. The possible origins of structural changes are assigned to the valence instability and the frustrated Coulomb interactions that induce the charge disproportionation (coexisting neutral ionic) states with the staging spatial orders.

12.
Phys Rev Lett ; 108(23): 237601, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-23003988

RESUMO

Ferroelectric polarization of 6.3 µC cm(-2) is induced by the neutral-to-ionic transition, upon which nonpolar molecules of electron donor tetrathiafulvalene (TTF) and acceptor p-chloranil (CA) are incompletely ionized to ±0.60e and dimerized along the molecular stacking chain. We find that the ferroelectric properties are governed by intermolecular charge transfer rather than simple displacement of static point charge on molecules. The observed polarization and poling effect on the absolute structural configuration can be interpreted in terms of electronic ferroelectricity, which not only exhibits antiparallel polarity to the ionic displacement but also enhances the polarization more than 20 times that of the point-charge model.

13.
Chem Sci ; 12(42): 14198-14206, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34760205

RESUMO

Dielectrics that undergo electric-field-induced phase changes are promising for use as high-power electrical energy storage materials and transducers. We demonstrate the stepwise on/off switching of large polarization in a series of dielectrics by flipping their antipolar or canted electric dipoles via proton transfer and inducing simultaneous geometric changes in their π-conjugation system. Among antiferroelectric organic molecular crystals, the largest-magnitude polarization jump was obtained as 18 µC cm-2 through revisited measurements of squaric acid (SQA) crystals with improved dielectric strength. The second-best polarization jump of 15.1 µC cm-2 was achieved with a newly discovered antiferroelectric, furan-3,4-dicarboxylic acid. The field-induced dielectric phase changes show rich variations in their mechanisms. The quadruple polarization hysteresis loop observed for a 3-(4-chlorophenyl)propiolic acid crystal was caused by a two-step phase transition with moderate polarization jumps. The ferroelectric 2-phenylmalondialdehyde single crystal having canted dipoles behaved as an amphoteric dielectric, exhibiting a single or double polarization hysteresis loop depending on the direction of the external field. The magnitude of a series of observed polarizations was consistently reproduced within the simplest sublattice model by the density functional theory calculations of dipole moments flipping over a hydrogen-bonded chain or sheet (sublattice) irrespective of compounds. This finding guarantees a tool that will deepen our understanding of the microscopic phase-change mechanisms and accelerate the materials design and exploration for improving energy-storage performance. The excellent energy-storage performance of SQA was demonstrated by both a high recoverable energy-storage density W r of 3.3 J cm-3 and a nearly ideal efficiency (90%). Because of the low crystal density, the corresponding energy density per mass (1.75 J g-1) exceeded those derived from the highest W r values (∼8-11 J cm-3) reported for several bulk antiferroelectric ceramics , without modification to relaxor forms.

14.
Chem Sci ; 11(24): 6183-6192, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32874515

RESUMO

Metaelectric transition, i.e. an abrupt increase in polarization with an electric field is just a phase change phenomenon in dielectrics and attracts increasing interest for practical applications such as electrical energy storage and highly deformable transducers. Here we demonstrate that both field-induced metaelectric transitions and temperature-induced phase transitions occur successively on a crystal of highly polarizable bis-(1H-benzimidazol-2-yl)-methane (BI2C) molecules. In each molecule, two switchable polar subunits are covalently linked with each other. By changing the NH hydrogen location, the low- and high-dipole states of each molecule can be interconverted, turning on and off the polarization of hydrogen-bonded molecular ribbons. In the low-temperature phase III, the tetragonal crystal lattice comprises orthogonally crossed arrays of polar ribbons made up of a ladder-like hydrogen-bond network of fully polarized molecules. The single-step metaelectric transition from this phase III corresponds to the forced alignment of antiparallel dipoles typical of antiferroelectrics. By the transition to the intermediate-temperature phase II, the polarity is turned off for half of the ribbons so that the nonpolar and polar ribbons are orthogonal to each other. Considering also the ferroelastic-like crystal twinning, the doubled steps of metaelectric transitions observed in the phase II can be explained by the additional switching at different critical fields, by which the nonpolar ribbons undergo "metadielectric" molecular transformation restoring the strong polarization. This mechanism inevitably brings about exotic phase change phenomena transforming the multi-domain state of a homogeneous phase into an inhomogeneous (phase mixture) state.

15.
Chem Sci ; 11(46): 12493-12505, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34976335

RESUMO

The construction and control of 2D layered molecular packing motifs with functionally substituted π-electron cores are crucial for developing organic electronic materials and devices. We investigated a regioisomeric structure-property relationship in high-performance and solution-processable layered organic semiconductors based on mono-octyl-substituted benzothieno[3,2-b]naphtho[2,3-b]thiophene (mono-C8-BTNT). We demonstrated that an isomorphous bilayer-type layered herringbone packing motif is obtainable in a series of four positional isomers of mono-C8-BTNTs whose π-electron core is substituted by an octyl chain at one of the four most peripheral positions with roughly keeping the rod-like molecular shape. These regioisomeric compounds exhibited systematic variations in the solvent solubility and liquid-crystalline phase transitions at elevated temperatures. The analysis of intermolecular interaction energies in the crystals based on dispersion-corrected DFT calculations revealed that the crystals of 2- and 8-mono-C8-BTNTs are more stable than those of 3- and 9-mono-C8-BTNTs owing to the higher ordering of alkyl chain layers in the crystals. Such differences of the stability in their crystal formation are closely correlated with TFT performances, where the single-crystal devices of the 2- and 8-mono-C8-BTNTs substituted at the most peripheral positions exhibit high-performance TFT characteristics with a mobility of approximately 10 cm2 V-1 s-1.

16.
Nat Mater ; 7(5): 357-66, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18432209

RESUMO

Ferroelectricity results from one of the most representative phase transitions in solids, and is widely used for technical applications. However, observations of ferroelectricity in organic solids have until recently been limited to well-known polymer ferroelectrics and only a few low-molecular-mass compounds. Whereas the traditional use of dipolar molecules has hardly succeeded in producing ferroelectricity in general, here we review advances in the synthesis of new organic materials with promising ferroelectric properties near room temperature, using design principles in analogy to inorganic compounds. These materials are based on non-covalent molecules formed by two or more components, in which ferroelectricity arises either from molecular displacements or from the collective transfer of electrons or protons. The principle of using multi-component molecular compounds leads to a much broader design flexibility and may therefore facilitate the development of future functional organics.

17.
RSC Adv ; 9(68): 39662-39673, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-35541415

RESUMO

Supramolecular cocrystals of anilic acids with 2,2'-bipyridines exhibit successive phase transitions as well as unusual isotope effects. Ferroelectricity driven by a cooperative proton transfer along the supramolecular chains is accompanied by huge permittivity (a maximum of 13 000) at the Curie point, as well as a large spontaneous polarization (maximum 5 µC cm-2) and a low coercive field ranging from 0.5 to 10 kV cm-1. Deuterium substitutions over the hydrogen bonds smoothly raise the Curie point and simultaneously reduce other phase-transition temperatures by a few tens of degrees. The coexistence of opposite isotope effects reduces the temperature interval of the intermediate paraelectric phase from 84 to 10 K for the 5,5'-dimethyl-2,2'-bipyridinium bromanilate salt. The bipyridine molecules exhibit interplanar twisting, which represents the order parameter relevant to the high-temperature phase transitions. The normal and inverse temperature shifts are ascribed to the direct and indirect effects, respectively, of the lengthened hydrogen bonds, which adjusts the molecular conformation of the flexible bipyridine unit so as to minimally modify their adjacent intermolecular interactions.

18.
J Am Chem Soc ; 130(40): 13382-91, 2008 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-18781747

RESUMO

Ferroelectricity as well as characteristic proton-transfer dynamics are achieved by combining a 2,3,5,6-tetra(2'-pyridyl)pyrazine (TPPZ) molecule with anilic acids (H2xa). Dielectric measurements revealed phase transitions at T(c) = 334 and 172 K for bromanilate (Hba(-)) and chloranilate (Hca(-)) salts, respectively. The room-temperature ferroelectricity of the (H2-TPPZ)(Hba)2 crystal is evidenced by the slow polarization reversal with modest pyroelectricity. In accord with the observed large deuteration effect, synchrotron X-ray diffraction studies disclosed proton dynamics in an intramolecular N...H(+)...N bond of the H2-TPPZ(2+) dication and in an O-H...O(-) hydrogen-bonded cyclic dimer of the ortho-quinoid Hxa(-) anions. The disordered (Hxa(-))2 dimer in two-fold orientation manifests its double-proton transfer process above T(c), whereas these protons are ordered in the ferroelectric phase. The H2-TPPZ(2+) dication acts as a proton sponge by forming two intramolecular N...H(+)...N hydrogen bridges between the pyridyl units with a very short N...N distance. The dication in the paraelectric state adopts a nonpolar geometry due to the delocalization of the protons over two sites in the respective N...H(+)...N bonds. Below T(c), only one of the two protons gets localized, and the resultant acentric H2-TPPZ(2+) ion generates the dipole moment responsible for the ferroelectricity.

19.
Chem Commun (Camb) ; (23): 2321-9, 2007 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-17844735

RESUMO

Organic ferroelectrics are multifunctional candidates for future organic electronic and optical devices. In spite of their potential, only a few organic compounds are known to exhibit a ferroelectric transition. The conventional approach to ferroelectrics, in general, relies on the use of asymmetric dipolar molecules and/or substituents. Recently, distinct design strategies have been developed using the molecular compounds of binary- or multi-components, combined with "non-covalent" forces: charge-transfer interactions and/or hydrogen bonding. This article focuses on the supramolecular systems of hydrogen-bonded acid and base molecules. Ferroelectricity and a significant dielectric response, as well as an antiferroelectric ordering induced by proton transfer, are demonstrated in the hydrogen-bonded chains composed of 2,5-dihydroxy-p-benzoquinone derivatives and nitrogen-containing aromatic bases.

20.
Nat Commun ; 8: 14426, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28205550

RESUMO

Ferroelectrics based on proton tautomerism are promising in low-field and above-room-temperature operations. Here seven organic ferroelectric crystals are examined to search for efficient switching of strong spontaneous polarization on proton tautomerism. Solution-grown crystals exhibit strong pinning of ferroelectric domain walls, but excellent switching performance is awakened by depinning domain walls under thermal annealing and/or repetitive bipolar pulses with a high voltage. Compared with ferroelectric polymers such as polyvinylidefluoride, the optimized polarizations are comparable or stronger in magnitude whereas the coercive fields are two orders of magnitude weaker. The polarization of croconic acid, in particular, breaks its own record for organic systems in increasing from 21 to 30 µC cm-2 and now exceeds those of some commercial ferroelectric materials such as SrBi2Ta2O9 and BaTiO3. Optimization reduces the discrepancy of the spontaneous polarization with the results of the first-principles calculations to less than 15%. The cooperative roles of proton transfer and π-bond switching are discussed by employing the point-charge model and hydrogen-bond geometry.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa