Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1079008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909234

RESUMO

Heart rate biologging has been successfully used to study wildlife responses to natural and human-caused stressors (e.g., hunting, landscape of fear). Although rarely deployed to inform conservation, heart rate biologging may be particularly valuable for assessing success in wildlife reintroductions. We conducted a case study for testing and validating the use of subcutaneous heart rate monitors in eight captive scimitar-horned oryx (Oryx dammah), a once-extinct species that is currently being restored to the wild. We evaluated biologger safety and accuracy while collecting long-term baseline data and assessing factors explaining variation in heart rate. None of the biologgers were rejected after implantation, with successful data capture for 16-21 months. Heart rate detection accuracy was high (83%-99%) for six of the individuals with left lateral placement of the biologgers. We excluded data from two individuals with a right lateral placement because accuracies were below 60%. Average heart rate for the six scimitar-horned oryx was 60.3 ± 12.7 bpm, and varied by about 12 bpm between individuals, with a minimum of 31 bpm and a maximum of 188 bpm across individuals. Scimitar-horned oryx displayed distinct circadian rhythms in heart rate and activity. Heart rate and activity were low early in the morning and peaked near dusk. Circadian rhythm in heart rate and activity were relatively unchanged across season, but hourly averages for heart rate and activity were higher in spring and summer, respectively. Variation in hourly heart rate averages was best explained by a combination of activity, hour, astronomical season, ambient temperature, and an interaction term for hour and season. Increases in activity appeared to result in the largest changes in heart rate. We concluded that biologgers are safe and accurate and can be deployed in free-ranging and reintroduced scimitar-horned oryx. In addition to current monitoring practices of reintroduced scimitar-horned oryx, the resulting biologging data could significantly aid in 1) evaluating care and management action prior to release, 2) characterizing different animal personalities and how these might affect reintroduction outcomes for individual animals, and 3) identifying stressors after release to determine their timing, duration, and impact on released animals. Heart rate monitoring in released scimitar-horned oryx may also aid in advancing our knowledge about how desert ungulates adapt to extreme environmental variation in their habitats (e.g., heat, drought).

2.
Conserv Physiol ; 9(1): coab044, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34188936

RESUMO

Anthropogenic change is a major threat to individual species and biodiversity. Yet the behavioral and physiological responses of animals to these changes remain understudied. This is due to the technological challenges in assessing these effects in situ. Using captive maned wolves (Chrysocyon brachyurus, n = 6) as a model, we deployed implantable biologgers and collected physiological data on heart rate (HR) and heart rate variability (HRV) over a 1-year period. To test for links between HR and changes in the environment we analysed HR daily rhythms and responses to potential stressors (e.g. physical restraint, change in housing conditions, short-distance transportation and unfamiliar human presence). The 2-min HR averages ranged from 33 to 250 bpm, with an overall rest average of 73 bpm and a maximum of 296 bpm. On average, HRV was higher in females (227 ± 51 ms) than in males (151 ± 51 ms). As expected, HR increased at dusk and night when animals were more active and in response to stressors. Sudden decreases in HR were observed during transportation in three wolves, suggestive of fear bradycardia. We provide the first non-anesthetic HR values for the species and confirm that behaviour does not always reflect the shifts in autonomic tone in response to perceived threats. Because strong HR responses often were not revealed by observable changes in behaviour, our findings suggest that the number and variety of stressors in ex situ or in situ environments for maned wolves and most wildlife species may be underestimated. Our study also shows that integrating biologging with behavioral observations can provide vital information to guide captive management. Similar technology can be used to advance in situ research for developing more effective welfare, management and conservation plans for the species.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa