Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Phys Rev Lett ; 129(11): 111101, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36154418

RESUMO

The central region of the Milky Way is one of the foremost locations to look for dark matter (DM) signatures. We report the first results on a search for DM particle annihilation signals using new observations from an unprecedented γ-ray survey of the Galactic Center (GC) region, i.e., the Inner Galaxy Survey, at very high energies (≳100 GeV) performed with the H.E.S.S. array of five ground-based Cherenkov telescopes. No significant γ-ray excess is found in the search region of the 2014-2020 dataset and a profile likelihood ratio analysis is carried out to set exclusion limits on the annihilation cross section ⟨σv⟩. Assuming Einasto and Navarro-Frenk-White (NFW) DM density profiles at the GC, these constraints are the strongest obtained so far in the TeV DM mass range. For the Einasto profile, the constraints reach ⟨σv⟩ values of 3.7×10^{-26} cm^{3} s^{-1} for 1.5 TeV DM mass in the W^{+}W^{-} annihilation channel, and 1.2×10^{-26} cm^{3} s^{-1} for 0.7 TeV DM mass in the τ^{+}τ^{-} annihilation channel. With the H.E.S.S. Inner Galaxy Survey, ground-based γ-ray observations thus probe ⟨σv⟩ values expected from thermal-relic annihilating TeV DM particles.

2.
Nature ; 440(7087): 1018-21, 2006 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-16625189

RESUMO

The diffuse extragalactic background light consists of the sum of the starlight emitted by galaxies through the history of the Universe, and it could also have an important contribution from the 'first stars', which may have formed before galaxy formation began. Direct measurements are difficult and not yet conclusive, owing to the large uncertainties caused by the bright foreground emission associated with zodiacal light. An alternative approach is to study the absorption features imprinted on the gamma-ray spectra of distant extragalactic objects by interactions of those photons with the background light photons. Here we report the discovery of gamma-ray emission from the blazars H 2356 - 309 and 1ES 1101 - 232, at redshifts z = 0.165 and z = 0.186, respectively. Their unexpectedly hard spectra provide an upper limit on the background light at optical/near-infrared wavelengths that appears to be very close to the lower limit given by the integrated light of resolved galaxies. The background flux at these wavelengths accordingly seems to be strongly dominated by the direct starlight from galaxies, thus excluding a large contribution from other sources-in particular from the first stars formed. This result also indicates that intergalactic space is more transparent to gamma-rays than previously thought.

3.
Nature ; 439(7077): 695-8, 2006 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-16467831

RESUMO

The source of Galactic cosmic rays (with energies up to 10(15) eV) remains unclear, although it is widely believed that they originate in the shock waves of expanding supernova remnants. At present the best way to investigate their acceleration and propagation is by observing the gamma-rays produced when cosmic rays interact with interstellar gas. Here we report observations of an extended region of very-high-energy (> 10(11) eV) gamma-ray emission correlated spatially with a complex of giant molecular clouds in the central 200 parsecs of the Milky Way. The hardness of the gamma-ray spectrum and the conditions in those molecular clouds indicate that the cosmic rays giving rise to the gamma-rays are likely to be protons and nuclei rather than electrons. The energy associated with the cosmic rays could have come from a single supernova explosion around 10(4) years ago.

4.
Nature ; 432(7013): 75-7, 2004 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-15525982

RESUMO

A significant fraction of the energy density of the interstellar medium is in the form of high-energy charged particles (cosmic rays). The origin of these particles remains uncertain. Although it is generally accepted that the only sources capable of supplying the energy required to accelerate the bulk of Galactic cosmic rays are supernova explosions, and even though the mechanism of particle acceleration in expanding supernova remnant (SNR) shocks is thought to be well understood theoretically, unequivocal evidence for the production of high-energy particles in supernova shells has proven remarkably hard to find. Here we report on observations of the SNR RX J1713.7 - 3946 (G347.3 - 0.5), which was discovered by ROSAT in the X-ray spectrum and later claimed as a source of high-energy gamma-rays of TeV energies (1 TeV = 10(12) eV). We present a TeV gamma-ray image of the SNR: the spatially resolved remnant has a shell morphology similar to that seen in X-rays, which demonstrates that very-high-energy particles are accelerated there. The energy spectrum indicates efficient acceleration of charged particles to energies beyond 100 TeV, consistent with current ideas of particle acceleration in young SNR shocks.

5.
Science ; 331(6018): 736-9, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21212318

RESUMO

The well-known Crab Nebula is at the center of the SN1054 supernova remnant. It consists of a rotationally powered pulsar interacting with a surrounding nebula through a relativistic particle wind. The emissions originating from the pulsar and nebula have been considered to be essentially stable. Here, we report the detection of strong gamma-ray (100 mega-electron volts to 10 giga-electron volts) flares observed by the AGILE satellite in September 2010 and October 2007. In both cases, the total gamma-ray flux increased by a factor of three compared with the non-flaring flux. The flare luminosity and short time scale favor an origin near the pulsar, and we discuss Chandra Observatory x-ray and Hubble Space Telescope optical follow-up observations of the nebula. Our observations challenge standard models of nebular emission and require power-law acceleration by shock-driven plasma wave turbulence within an approximately 1-day time scale.

7.
Phys Rev Lett ; 97(22): 221102, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17155788

RESUMO

The detection of gamma rays from the source HESS J1745-290 in the Galactic Center (GC) region with the High Energy Spectroscopic System (HESS) array of Cherenkov telescopes in 2004 is presented. After subtraction of the diffuse gamma-ray emission from the GC ridge, the source is compatible with a point source with spatial extent less than 1.2;{'}(stat) (95% C.L.). The measured energy spectrum above 160 GeV is compatible with a power law with photon index of 2.25+/-0.04(stat)+/-0.10(syst) and no significant flux variation is detected. It is finally found that the bulk of the very high energy emission must have non-dark-matter origin.

8.
Science ; 307(5717): 1938-42, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15790849

RESUMO

Very high energy gamma-rays probe the long-standing mystery of the origin of cosmic rays. Produced in the interactions of accelerated particles in astrophysical objects, they can be used to image cosmic particle accelerators. A first sensitive survey of the inner part of the Milky Way with the High Energy Stereoscopic System (HESS) reveals a population of eight previously unknown firmly detected sources of very high energy gamma-rays. At least two have no known radio or x-ray counterpart and may be representative of a new class of "dark" nucleonic cosmic ray sources.

9.
Science ; 309(5735): 746-9, 2005 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-16002580

RESUMO

X-ray binaries are composed of a normal star in orbit around a neutron star or stellar-mass black hole. Radio and x-ray observations have led to the presumption that some x-ray binaries called microquasars behave as scaled-down active galactic nuclei. Microquasars have resolved radio emission that is thought to arise from a relativistic outflow akin to active galactic nuclei jets, in which particles can be accelerated to large energies. Very high energy gamma-rays produced by the interactions of these particles have been observed from several active galactic nuclei. Using the High Energy Stereoscopic System, we find evidence for gamma-ray emission of >100 gigaelectron volts from a candidate microquasar, LS 5039, showing that particles are also accelerated to very high energies in these systems.

10.
Graefes Arch Clin Exp Ophthalmol ; 220(1): 25-31, 1983.
Artigo em Inglês | MEDLINE | ID: mdl-6403410

RESUMO

A twenty-one year old female with previously unsuspected neurofibromatosis presented for evaluation of a blind painful eye. Histopathologic examination of the enucleated specimen revealed choroidal thickening with ovoid bodies and proliferation of connective tissue with pigment-containing cells and ganglion-like cells. Electron microscopic study of the latter cell population revealed typical morphologic features of ganglion cells, including numerous electron-dense intracellular granules and an abundance of mitochondria and rough endoplasmic reticulum. These pathologic findings were interpreted as consistent with the diagnosis of choroidal ganglioneuroma occurring in the context of ocular neurofibromatosis. The literature concerning this unusual tumor is reviewed and the possible relationship of this lesion to neurofibromatosis and other disorders of neural cresent proliferation are briefly discussed.


Assuntos
Neoplasias da Coroide/patologia , Ganglioneuroma/patologia , Neoplasias Primárias Múltiplas/patologia , Neurofibromatose 1/patologia , Adulto , Neoplasias da Coroide/ultraestrutura , Feminino , Ganglioneuroma/ultraestrutura , Humanos , Microscopia Eletrônica , Neurofibromatose 1/ultraestrutura
11.
Trans Ophthalmol Soc U K (1962) ; 103 ( Pt 3): 288-96, 1983.
Artigo em Inglês | MEDLINE | ID: mdl-6585072

RESUMO

Three hundred and eighty eyes of 300 patients which were treated with argon laser trabeculoplasty for medically uncontrolled open angle glaucoma were studied retrospectively. Among the 334 eyes having at least six weeks follow up, the mean overall pressure drop was 8.1 mm Hg. In 19.2 per cent of eyes, pressure was inadequately controlled by laser treatment and subsequent glaucoma surgery was required. Phakic primary chronic open angle glaucoma (COAG), aphakic COAG, pseudoexfoliation, pigmentary, and low tension glaucoma eyes all had a significant drop in pressure. Eyes with juvenile glaucoma or inflammatory glaucoma had a much poorer response in terms of mean pressure drop and number requiring later operation. There was no statistically significant difference in response between aphakic and phakic coag eyes, between pseudoexfoliation and phakic COAG eyes, or between eyes treated over the full 360 degrees and eyes treated over half the angle with treatment over the second half later if needed. A higher initial pressure usually resulted in a greater lowering of pressure. Medication was reduced after treatment in 28.7 per cent of eyes. The data suggest that the effect of laser trabeculoplasty generally persists for at least one year. Complications were few, the most serious being elevated intraocular pressure, which rose 10 mm Hg or more in 2.1 per cent of all eyes.


Assuntos
Glaucoma de Ângulo Aberto/cirurgia , Terapia a Laser , Lasers , Malha Trabecular/cirurgia , Seguimentos , Glaucoma de Ângulo Aberto/tratamento farmacológico , Glaucoma de Ângulo Aberto/fisiopatologia , Humanos , Pressão Intraocular , Lasers/efeitos adversos , Reoperação , Estudos Retrospectivos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa