Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Hepatology ; 74(4): 2186-2200, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33982327

RESUMO

BACKGROUND AND AIMS: TGFß/bone morphogenetic protein (BMP) signaling in the liver plays a critical role in liver disease. Growth factors, such as BMP2, BMP6, and TGFß1, are released from LSECs and signal in a paracrine manner to hepatocytes and hepatic stellate cells to control systemic iron homeostasis and fibrotic processes, respectively. The misregulation of the TGFß/BMP pathway affects expression of the iron-regulated hormone hepcidin, causing frequent iron overload and deficiency diseases. However, whether LSEC-secreted factors can act in an autocrine manner to maintain liver homeostasis has not been addressed so far. APPROACH AND RESULTS: We analyzed publicly available RNA-sequencing data of mouse LSECs for ligand-receptor interactions and identified members of the TGFß family (BMP2, BMP6, and TGFß1) as ligands with the highest expression levels in LSECs that may signal in an autocrine manner. We next tested the soluble factors identified through in silico analysis in optimized murine LSEC primary cultures and mice. Exposure of murine LSEC primary cultures to these ligands shows that autocrine responses to BMP2 and BMP6 are blocked despite high expression levels of the required receptor complexes partially involving the inhibitor FK-506-binding protein 12. By contrast, LSECs respond efficiently to TGFß1 treatment, which causes reduced expression of BMP2 through activation of activin receptor-like kinase 5. CONCLUSIONS: These findings reveal that TGFß1 signaling is functionally interlinked with BMP signaling in LSECs, suggesting druggable targets for the treatment of iron overload diseases associated with deficiency of the BMP2-regulated hormone hepcidin, such as hereditary hemochromatosis, ß-thalassemia, and chronic liver diseases.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 6/metabolismo , Hepcidinas/metabolismo , Ferro/metabolismo , Cirrose Hepática , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Descoberta de Drogas , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Células Estreladas do Fígado , Hepatócitos/metabolismo , Homeostase , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos
2.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445160

RESUMO

Throughout life, macrophages are located in every tissue of the body, where their main roles are to phagocytose cellular debris and recycle aging red blood cells. In the tissue niche, they promote homeostasis through trophic, regulatory, and repair functions by responding to internal and external stimuli. This in turn polarizes macrophages into a broad spectrum of functional activation states, also reflected in their iron-regulated gene profile. The fast adaptation to the environment in which they are located helps to maintain tissue homeostasis under physiological conditions.


Assuntos
Ferro/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Animais , Homeostase , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Ferro/metabolismo , Macrófagos/metabolismo , Fagocitose
3.
J Immunother Cancer ; 12(1)2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191243

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive tumor. Prognosis is poor and survival is low in patients diagnosed with this disease, with a survival rate of ~12% at 5 years. Immunotherapy, including adoptive T cell transfer therapy, has not impacted the outcomes in patients with PDAC, due in part to the hostile tumor microenvironment (TME) which limits T cell trafficking and persistence. We posit that murine models serve as useful tools to study the fate of T cell therapy. Currently, genetically engineered mouse models (GEMMs) for PDAC are considered a "gold-standard" as they recapitulate many aspects of human disease. However, these models have limitations, including marked tumor variability across individual mice and the cost of colony maintenance. METHODS: Using flow cytometry and immunohistochemistry, we characterized the immunological features and trafficking patterns of adoptively transferred T cells in orthotopic PDAC (C57BL/6) models using two mouse cell lines, KPC-Luc and MT-5, isolated from C57BL/6 KPC-GEMM (KrasLSL-G12D/+p53-/- and KrasLSL-G12D/+p53LSL-R172H/+, respectively). RESULTS: The MT-5 orthotopic model best recapitulates the cellular and stromal features of the TME in the PDAC GEMM. In contrast, far more host immune cells infiltrate the KPC-Luc tumors, which have less stroma, although CD4+ and CD8+ T cells were similarly detected in the MT-5 tumors compared with KPC-GEMM in mice. Interestingly, we found that chimeric antigen receptor (CAR) T cells redirected to recognize mesothelin on these tumors that signal via CD3ζ and 41BB (Meso-41BBζ-CAR T cells) infiltrated the tumors of mice bearing stroma-devoid KPC-Luc orthotopic tumors, but not MT-5 tumors. CONCLUSIONS: Our data establish for the first time a reproducible and realistic clinical system useful for modeling stroma-rich and stroma-devoid PDAC tumors. These models shall serve an indepth study of how to overcome barriers that limit antitumor activity of adoptively transferred T cells.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas p21(ras) , Linfócitos T CD8-Positivos , Proteína Supressora de Tumor p53 , Neoplasias Pancreáticas/terapia , Carcinoma Ductal Pancreático/terapia , Microambiente Tumoral
4.
ACS Nano ; 18(17): 11025-11041, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626916

RESUMO

ALK-positive NSCLC patients demonstrate initial responses to ALK tyrosine kinase inhibitor (TKI) treatments, but eventually develop resistance, causing rapid tumor relapse and poor survival rates. Growing evidence suggests that the combination of drug and immune therapies greatly improves patient survival; however, due to the low immunogenicity of the tumors, ALK-positive patients do not respond to currently available immunotherapies. Tumor-associated macrophages (TAMs) play a crucial role in facilitating lung cancer growth by suppressing tumoricidal immune activation and absorbing chemotherapeutics. However, they can also be programmed toward a pro-inflammatory tumor suppressive phenotype, which represents a highly active area of therapy development. Iron loading of TAMs can achieve such reprogramming correlating with an improved prognosis in lung cancer patients. We previously showed that superparamagnetic iron oxide nanoparticles containing core-cross-linked polymer micelles (SPION-CCPMs) target macrophages and stimulate pro-inflammatory activation. Here, we show that SPION-CCPMs stimulate TAMs to secrete reactive nitrogen species and cytokines that exert tumoricidal activity. We further show that SPION-CCPMs reshape the immunosuppressive Eml4-Alk lung tumor microenvironment (TME) toward a cytotoxic profile hallmarked by the recruitment of CD8+ T cells, suggesting a multifactorial benefit of SPION-CCPM application. When intratracheally instilled into lung cancer-bearing mice, SPION-CCPMs delay tumor growth and, after first line therapy with a TKI, halt the regrowth of relapsing tumors. These findings identify SPIONs-CCPMs as an adjuvant therapy, which remodels the TME, resulting in a delay in the appearance of resistant tumors.


Assuntos
Crizotinibe , Neoplasias Pulmonares , Nanopartículas Magnéticas de Óxido de Ferro , Microambiente Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Nanopartículas Magnéticas de Óxido de Ferro/química , Humanos , Camundongos , Crizotinibe/farmacologia , Crizotinibe/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Linhagem Celular Tumoral , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino
5.
Nat Commun ; 14(1): 771, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774352

RESUMO

Glioblastoma, the most common and aggressive primary brain tumor type, is considered an immunologically "cold" tumor with sparse infiltration by adaptive immune cells. Immunosuppressive tumor-associated myeloid cells are drivers of tumor progression. Therefore, targeting and reprogramming intratumoral myeloid cells is an appealing therapeutic strategy. Here, we investigate a ß-cyclodextrin nanoparticle (CDNP) formulation encapsulating the Toll-like receptor 7 and 8 (TLR7/8) agonist R848 (CDNP-R848) to reprogram myeloid cells in the glioma microenvironment. We show that intravenous monotherapy with CDNP-R848 induces regression of established syngeneic experimental glioma, resulting in increased survival rates compared with unloaded CDNP controls. Mechanistically, CDNP-R848 treatment reshapes the immunosuppressive tumor microenvironment and orchestrates tumor clearing by pro-inflammatory tumor-associated myeloid cells, independently of T cells and NK cells. Using serial magnetic resonance imaging, we identify a radiomic signature in response to CDNP-R848 treatment and ultrasmall superparamagnetic iron oxide (USPIO) imaging reveals that immunosuppressive macrophage recruitment is reduced by CDNP-R848. In conclusion, CDNP-R848 induces tumor regression in experimental glioma by targeting blood-borne macrophages without requiring adaptive immunity.


Assuntos
Glioma , Nanopartículas , Receptor 7 Toll-Like , Receptor 8 Toll-Like , Humanos , Adjuvantes Imunológicos , Glioma/tratamento farmacológico , Macrófagos , Linfócitos T , Receptor 7 Toll-Like/agonistas , Microambiente Tumoral , Receptor 8 Toll-Like/agonistas
6.
J Clin Invest ; 132(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453548

RESUMO

Myeloid-derived suppressor cells (MDSCs) hinder antitumor immunity in multiple cancer types. While brequinar (BRQ), an inhibitor of dihydroorotate dehydrogenase, shows cytotoxicity in hematological malignancy, it has not yet been adapted to attenuate MDSCs by augmenting bone marrow progenitors in breast cancer. In this issue of the JCI, Colligan et al. demonstrate that BRQ restored terminal differentiation of MDSCs. Using in vivo models of immunotherapy-resistant breast cancer, the authors uncovered a mechanism by which BRQ promoted myeloid cell differentiation by limiting their suppressive function and enhancing the efficacy of immune checkpoint blockade therapy. The findings offer insight into the biogenesis of MDSCs, provide an alternative avenue for cancers that remain unresponsive to conventional therapies, and may be extended to future translational studies in patients.


Assuntos
Neoplasias da Mama , Células Supressoras Mieloides , Humanos , Feminino , Compostos de Bifenilo , Diferenciação Celular
7.
Adv Healthc Mater ; 10(19): e2100385, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34137217

RESUMO

Iron is an essential co-factor for cellular processes. In the immune system, it can activate macrophages and represents a potential therapeutic for various diseases. To specifically deliver iron to macrophages, iron oxide nanoparticles are embedded in polymeric micelles of reactive polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine). Upon surface functionalization via dihydrolipoic acid, iron oxide cores act as crosslinker themselves and undergo chemoselective disulfide bond formation with the surrounding poly(S-ethylsulfonyl-l-cysteine) block, yielding glutathione-responsive core cross-linked polymeric micelles (CCPMs). When applied to primary murine and human macrophages, these nanoparticles display preferential uptake, sustained intracellular iron release, and induce a strong inflammatory response. This response is also demonstrated in vivo when nanoparticles are intratracheally administered to wild-type C57Bl/6N mice. Most importantly, the controlled release concept to deliver iron oxide in redox-responsive CCPMs induces significantly stronger macrophage activation than any other iron source at identical iron levels (e.g., Feraheme), directing to a new class of immune therapeutics.


Assuntos
Ferro , Micelas , Animais , Inflamação/tratamento farmacológico , Macrófagos , Camundongos , Polímeros
8.
Front Physiol ; 11: 589351, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519502

RESUMO

The respiratory tract is constantly exposed to pathogens that require iron for proliferation and virulence. Pulmonary iron levels are increased in several lung diseases and associated with increased susceptibility to infections. However, regulation of lung iron homeostasis and its cross talk to pulmonary immune responses are largely unexplored. Here we investigated how increased lung iron levels affect the early pulmonary inflammatory response. We induced acute local pulmonary inflammation via aerosolized LPS in a mouse model of hereditary hemochromatosis type 4 (Slc40a1 C326S/C326S), which is hallmarked by systemic and pulmonary iron accumulation, specifically in alveolar macrophages. We show that Slc40a1 C326S/C326S mice display a mild attenuation in the LPS-induced pulmonary inflammatory response, with a reduced upregulation of some pro-inflammatory cytokines and chemokines. Despite mildly reduced cytokine levels, there is no short-term impairment in the recruitment of neutrophils into the bronchoalveolar space. These data suggest that increased pulmonary iron levels do not strongly alter the acute inflammatory response of the lung.

9.
Cell Host Microbe ; 28(6): 853-866.e5, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33245857

RESUMO

Pathogenesis induced by SARS-CoV-2 is thought to result from both an inflammation-dominated cytokine response and virus-induced cell perturbation causing cell death. Here, we employ an integrative imaging analysis to determine morphological organelle alterations induced in SARS-CoV-2-infected human lung epithelial cells. We report 3D electron microscopy reconstructions of whole cells and subcellular compartments, revealing extensive fragmentation of the Golgi apparatus, alteration of the mitochondrial network and recruitment of peroxisomes to viral replication organelles formed by clusters of double-membrane vesicles (DMVs). These are tethered to the endoplasmic reticulum, providing insights into DMV biogenesis and spatial coordination of SARS-CoV-2 replication. Live cell imaging combined with an infection sensor reveals profound remodeling of cytoskeleton elements. Pharmacological inhibition of their dynamics suppresses SARS-CoV-2 replication. We thus report insights into virus-induced cytopathic effects and provide alongside a comprehensive publicly available repository of 3D datasets of SARS-CoV-2-infected cells for download and smooth online visualization.


Assuntos
COVID-19/genética , Retículo Endoplasmático/ultraestrutura , SARS-CoV-2/ultraestrutura , Compartimentos de Replicação Viral/ultraestrutura , COVID-19/diagnóstico por imagem , COVID-19/patologia , COVID-19/virologia , Morte Celular/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/virologia , Humanos , Microscopia Eletrônica , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Compartimentos de Replicação Viral/metabolismo , Replicação Viral/genética
11.
J Mol Biol ; 426(12): 2379-92, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24726918

RESUMO

Heat shock protein 90 (Hsp90) is a molecular chaperone that plays a central role in maintaining cellular homeostasis by facilitating activation of a large number of client proteins. ATP-dependent client activation by Hsp90 is tightly regulated by a host of co-chaperone proteins that control progression through the activation cycle. ATPase stimulation of Hsp90 by Aha1p requires a conserved RKxK motif that interacts with the catalytic loop of Hsp90. In this study, we explore the role of this RKxK motif in the biological and biochemical properties of Hch1p. We found that this motif is required for Hch1p-mediated ATPase stimulation in vitro, but mutations that block stimulation do not impair the action of Hch1p in vivo. This suggests that the biological function of Hch1p is not directly linked to ATPase stimulation. Moreover, a mutation in the catalytic loop of Hsp90 specifically impairs ATPase stimulation by Aha1p but not by Hch1p. Our work here suggests that both Hch1p and Aha1p regulate Hsp90 function through interaction with the catalytic loop but do so in different ways.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Chaperoninas/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Mutação de Sentido Incorreto , Proteínas de Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Domínio Catalítico , Proteínas de Choque Térmico HSP90/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa