RESUMO
Brain-derived neurotrophic factor (BDNF) is a central modulator of neuronal development and synaptic plasticity in the central nervous system. This renders the BDNF-modulated tropomyosin receptor kinase B (TrkB) a promising drug target to treat synaptic dysfunctions. Using GRowth factor-driven expansion and INhibition of NotCH (GRINCH) during maturation, the so-called GRINCH neurons were derived from human-induced pluripotent stem cells. These GRINCH neurons were used as model cells for pharmacologic profiling of two TrkB-agonistic antibodies, hereafter referred to as AB2 and AB20 In next-generation sequencing studies, AB2 and AB20 stimulated transcriptional changes, which extensively overlapped with BDNF-driven transcriptional modulation. In regard to TrkB phosphorylation, both AB2 and AB20 were only about half as efficacious as BDNF; however, with respect to the TrkB downstream signaling, AB2 and AB20 displayed increased efficacy values, providing a stimulation at least comparable to BDNF in respect to VGF transcription, as well as of AKT and cAMP response element-binding protein phosphorylation. In a complex structure of the TrkB-d5 domain with AB20, determined by X-ray crystallography, the AB20 binding site was found to be allosteric in regard to the BDNF binding site, whereas AB2 was known to act orthosterically with BDNF. In agreement with this finding, AB2 and AB20 acted synergistically at greater concentrations to drive TrkB phosphorylation. Although TrkB downstream signaling declined faster after pulse stimulation with AB20 than with AB2, AB20 restimulated TrkB phosphorylation more efficiently than AB2. In conclusion, both antibodies displayed some limitations and some benefits in regard to future applications as therapeutic agents.
Assuntos
Anticorpos Monoclonais/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptor trkB/agonistas , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Fator Neurotrófico Derivado do Encéfalo/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Imunoglobulina G/farmacologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptor trkB/química , Receptor trkB/metabolismoRESUMO
Aggregation of therapeutic proteins is a major concern as aggregates lower the yield and can impact the efficacy of the drug as well as the patient's safety. It can occur in all production stages; thus, it is essential to perform a detailed analysis for protein aggregates. Several methods such as size exclusion high-performance liquid chromatography (SE-HPLC), light scattering, turbidity, light obscuration, and microscopy-based approaches are used to analyze aggregates. None of these methods allows determination of all types of higher molecular weight (HMW) species due to a limited size range. Furthermore, quantification and specification of different HMW species are often not possible. Moreover, automation is a perspective challenge coming up with automated robotic laboratory systems. Hence, there is a need for a fast, high-throughput-compatible method, which can detect a broad size range and enable quantification and classification. We describe a novel approach for the detection of aggregates in the size range 1 to 1000 µm combining fluorescent dyes for protein aggregate labelling and automated fluorescence microscope imaging (aFMI). After appropriate selection of the dye and method optimization, our method enabled us to detect various types of HMW species of monoclonal antibodies (mAbs). Using 10 µmol L-1 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonate (Bis-ANS) in combination with aFMI allowed the analysis of mAb aggregates induced by different stresses occurring during downstream processing, storage, and administration. Validation of our results was performed by SE-HPLC, UV-Vis spectroscopy, and dynamic light scattering. With this new approach, we could not only reliably detect different HMW species but also quantify and classify them in an automated approach. Our method achieves high-throughput requirements and the selection of various fluorescent dyes enables a broad range of applications.