Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
2.
Blood ; 120(6): 1228-36, 2012 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-22700724

RESUMO

C1q modulates the differentiation and function of cells committed to the monocyte-derived dendritic cell (DC) lineage. Because the 2 C1q receptors found on the DC surface-gC1qR and cC1qR-lack a direct conduit into intracellular elements, we postulated that the receptors must form complexes with transmembrane partners. In the present study, we show that DC-SIGN, a C-type lectin expressed on DCs, binds directly to C1q, as assessed by ELISA, flow cytometry, and immunoprecipitation experiments. Surface plasmon resonance analysis revealed that the interaction was specific, and both intact C1q and the globular portion of C1q bound to DC-SIGN. Whereas IgG reduced this binding significantly, the Arg residues (162-163) of the C1q-A chain, which are thought to contribute to the C1q-IgG interaction, were not required for C1q binding to DC-SIGN. Binding was reduced significantly in the absence of Ca(2+) and by preincubation of DC-SIGN with mannan, suggesting that C1q binds to DC-SIGN at its principal Ca(2+)-binding pocket, which has increased affinity for mannose residues. Antigen-capture ELISA and immunofluorescence microscopy revealed that C1q and gC1qR associate with DC-SIGN on blood DC precursors and immature DCs. The results of the present study suggest that C1q/gC1qR may regulate DC differentiation and function through the DC-SIGN-mediated induction of cell-signaling pathways.


Assuntos
Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular/metabolismo , Complemento C1q/metabolismo , Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos/metabolismo , Receptores de Superfície Celular/metabolismo , Ligação Competitiva , Cálcio/farmacologia , Diferenciação Celular/imunologia , Células Cultivadas , Células Dendríticas/fisiologia , Humanos , Modelos Biológicos , Monócitos/metabolismo , Monócitos/fisiologia , Complexos Multiproteicos/fisiologia , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Multimerização Proteica/fisiologia
3.
J Immunother Cancer ; 12(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772686

RESUMO

BACKGROUND: CD33 is a tractable target in acute myeloid leukemia (AML) for chimeric antigen receptor (CAR) T cell therapy, but clinical success is lacking. METHODS: We developed 3P14HLh28Z, a novel CD33-directed CD28/CD3Z-based CAR T cell derived from a high-affinity binder obtained through membrane-proximal fragment immunization in humanized mice. RESULTS: We found that immunization exclusively with the membrane-proximal domain of CD33 is necessary for identification of membrane-proximal binders in humanized mice. Compared with clinically validated lintuzumab-based CAR T cells targeting distal CD33 epitopes, 3P14HLh28Z showed enhanced in vitro functionality as well as superior tumor control and increased overall survival in both low antigen density and clinically relevant patient-derived xenograft models. Increased activation and enhanced polyfunctionality led to enhanced efficacy. CONCLUSIONS: Showing for the first time that a membrane-proximal CAR is superior to a membrane-distal one in the setting of CD33 targeting, our results demonstrate the rationale for targeting membrane-proximal epitopes with high-affinity binders. We also demonstrate the importance of optimizing CAR T cells for functionality in settings of both low antigen density and clinically relevant patient-derived models.


Assuntos
Imunoterapia Adotiva , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico , Humanos , Animais , Camundongos , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral
4.
Blood Adv ; 8(7): 1600-1611, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37878808

RESUMO

ABSTRACT: Teclistamab, a B-cell maturation antigen (BCMA)- and CD3-targeting bispecific antibody, is an effective novel treatment for relapsed/refractory multiple myeloma (R/RMM), but efficacy in patients exposed to BCMA-directed therapies and mechanisms of resistance have yet to be fully delineated. We conducted a real-world retrospective study of commercial teclistamab, capturing both clinical outcomes and immune correlates of treatment response in a cohort of patients (n = 52) with advanced R/RMM. Teclistamab was highly effective with an overall response rate (ORR) of 64%, including an ORR of 50% for patients with prior anti-BCMA therapy. Pretreatment plasma cell BCMA expression levels had no bearing on response. However, comprehensive pretreatment immune profiling identified that effector CD8+ T-cell populations were associated with response to therapy and a regulatory T-cell population associated with nonresponse, indicating a contribution of immune status in outcomes with potential utility as a biomarker signature to guide patient management.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Antígeno de Maturação de Linfócitos B/uso terapêutico , Estudos Retrospectivos , Antineoplásicos/uso terapêutico , Linfócitos T CD8-Positivos/metabolismo
5.
Sci Transl Med ; 14(646): eabj2829, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35613281

RESUMO

Microbial diversity is associated with improved outcomes in recipients of allogeneic hematopoietic cell transplantation (allo-HCT), but the mechanism underlying this observation is unclear. In a cohort of 174 patients who underwent allo-HCT, we demonstrate that a diverse intestinal microbiome early after allo-HCT is associated with an increased number of innate-like mucosal-associated invariant T (MAIT) cells, which are in turn associated with improved overall survival and less acute graft-versus-host disease (aGVHD). Immune profiling of conventional and unconventional immune cell subsets revealed that the prevalence of Vδ2 cells, the major circulating subpopulation of γδ T cells, closely correlated with the frequency of MAIT cells and was associated with less aGVHD. Analysis of these populations using both single-cell transcriptomics and flow cytometry suggested a shift toward activated phenotypes and a gain of cytotoxic and effector functions after transplantation. A diverse intestinal microbiome with the capacity to produce activating ligands for MAIT and Vδ2 cells appeared to be necessary for the maintenance of these populations after allo-HCT. These data suggest an immunological link between intestinal microbial diversity, microbe-derived ligands, and maintenance of unconventional T cells.


Assuntos
Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Células T Invariantes Associadas à Mucosa , Humanos , Ligantes
6.
Front Pediatr ; 8: 454, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974239

RESUMO

Hematopoietic cell transplantation (HCT) is often a last resort, but potentially curative treatment option for children suffering from hematological malignancies and a variety of non-malignant disorders, such as bone marrow failure, inborn metabolic disease or immune deficiencies. Although efficacy and safety of the HCT procedure has increased significantly over the last decades, the majority of the patients still suffer from severe acute toxicity, viral reactivation, acute or chronic graft-versus-host disease (GvHD) and/or, in case of malignant disease, relapses. Factors influencing HCT outcomes are numerous and versatile. For example, there is variation in the selected graft sources, type of infused cell subsets, cell doses, and the protocols used for conditioning, as well as immune suppression and treatment of adverse events. Moreover, recent pharmacokinetic studies show that medications used in the conditioning regimen (e.g., busulphan, fludarabine, anti-thymocyte globulin) should be dosed patient-specific to achieve optimal exposure in every individual patient. Due to this multitude of variables and site-specific policies/preferences, harmonization between HCT centers is still difficult to achieve. Literature shows that adequate immune recovery post-HCT limits both relapse and non-relapse mortality (death due to viral reactivations and GvHD). Monitoring immune parameters post-HCT may facilitate a timely prediction of outcome. The use of standardized assays to measure immune parameters would facilitate a fast comparison between different strategies tested in different centers or between different clinical trials. We here discuss immune cell markers that may contribute to clinical decision making and may be worth to standardize in multicenter collaborations for future trials.

7.
Front Immunol ; 11: 583853, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117397

RESUMO

Genetic deficiency in C1q is a strong susceptibility factor for systemic lupus erythematosus (SLE). There are two major hypotheses that potentially explain the role of C1q in SLE. The first postulates that C1q deficiency abrogates apoptotic cell clearance, leading to persistently high loads of potentially immunogenic self-antigens that trigger autoimmune responses. While C1q undoubtedly plays an important role in apoptotic clearance, an essential biological process such as removal of self- waste is so critical for host survival that multiple ligand-receptor combinations do fortunately exist to ensure that proper disposal of apoptotic debris is accomplished even in the absence of C1q. The second hypothesis is based on the observation that locally synthesized C1q plays a critical role in regulating the earliest stages of monocyte to dendritic cell (DC) differentiation and function. Indeed, circulating C1q has been shown to keep monocytes in a pre-dendritic state by silencing key molecular players and ensuring that unwarranted DC-driven immune responses do not occur. Monocytes are also able to display macromolecular C1 on their surface, representing a novel mechanism for the recognition of circulating "danger." Translation of this danger signal in turn, provides the requisite "license" to trigger a differentiation pathway that leads to adaptive immune response. Based on this evidence, the second hypothesis proposes that deficiency in C1q dysregulates monocyte-to-DC differentiation and causes inefficient or defective maintenance of self-tolerance. The fact that C1q receptors (cC1qR and gC1qR) are also expressed on the surface of both monocytes and DCs, suggests that C1q/C1qR may regulate DC differentiation and function through specific cell-signaling pathways. While their primary ligand is C1q, C1qRs can also independently recognize a vast array of plasma proteins as well as pathogen-associated molecular ligands, indicating that these molecules may collaborate in antigen recognition and processing, and thus regulate DC-differentiation. This review will therefore focus on the role of C1q and C1qRs in SLE and explore the gC1qR/C1q axis as a potential target for therapy.


Assuntos
Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/terapia , Animais , Diferenciação Celular/imunologia , Complemento C1q/imunologia , Células Dendríticas/imunologia , Humanos , Tolerância Imunológica/imunologia , Glicoproteínas de Membrana/imunologia , Monócitos/imunologia , Receptores de Complemento/imunologia , Transdução de Sinais/imunologia
8.
Mol Immunol ; 74: 18-26, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27111569

RESUMO

A substantial body of evidence accumulated over the past 20 years supports the concept that gC1qR is a major pathogen-associated pattern recognition receptor (PRR). This conclusion is based on the fact that, a wide range of bacterial and viral ligands are able to exploit gC1qR to either suppress the host's immune response and thus enhance their survival, or to gain access into cells to initiate disease. Of the extensive array of viral ligands that have affinity for gC1qR, the HIV-1 envelope glycoprotein gp41, and the core protein of hepatitis C virus (HCV) are of major interest as they are known to contribute to the high morbidity and mortality caused by these pathogens. While the HCV core protein binds gC1qR and suppresses T cell proliferation resulting in a significantly diminished immune response, the gp41 employs gC1qR to induce the surface expression of the NK cell ligand, NKp44L, on uninfected CD4(+) T cells, thereby rendering them susceptible to autologous destruction by NKp44 receptor expressing NK cells. Because of the potential for the design of peptide-based or antibody-based therapeutic options, the present studies were undertaken to define the gC1qR interaction sites for these pathogen-associated molecular ligands. Employing a solid phase microplate-binding assay, we examined the binding of each viral ligand to wild type gC1qR and 11 gC1qR deletion mutants. The results obtained from these studies have identified two major HCV core protein sites on a domain of gC1qR comprising of residues 144-148 and 196-202. Domain 196-202 in turn, is located in the last half of the larger gC1qR segment encoded by exons IV-VI (residues 159-282), which was proposed previously to contain the site for HCV core protein. The major gC1qR site for gp41 on the other hand, was found to be in a highly conserved region encoded by exon IV and comprises of residues 174-180. Interestingly, gC1qR residues 174-180 also constitute the cell surface-binding site for soluble gC1qR (sgC1qR), which can bind to the cell surface in an autocrine/paracrine manner via surface expressed fibrinogen or other membrane molecules. The identification of the sites for these viral ligands should therefore provide additional targets for the design of peptide-based or antigen-based therapeutic strategies.


Assuntos
Proteínas de Transporte/química , Proteína gp41 do Envelope de HIV/imunologia , Proteínas Mitocondriais/química , Receptores de Reconhecimento de Padrão/química , Proteínas do Core Viral/imunologia , Sítios de Ligação/imunologia , Linfócitos T CD4-Positivos/imunologia , Proteínas de Transporte/imunologia , Humanos , Proteínas Mitocondriais/imunologia , Monócitos/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Células U937
9.
Front Immunol ; 5: 278, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25018754

RESUMO

The ability of circulating blood monocytes to express C1q receptors (cC1qR and gC1qR) as well as to synthesize and secrete the classical pathway proteins C1q, C1r, and C1s and their regulator, C1-INH is very well established. What is intriguing, however, is that, in addition to secretion of the individual C1 proteins monocytes are also able to display macromolecular C1 on their surface in a manner that is stable and functional. The cell surface C1 complex is presumably formed by a Ca(2+)-dependent association of the C1r2⋅C1s2 tetramer to C1q, which in turn is anchored via a membrane-binding domain located in the N-terminus of its A-chain as shown previously. Monocytes, which circulate in the blood for 1-3 days before they move into tissues throughout the body, not only serve as precursors of macrophages and dendritic cells (DCs), but also fulfill three main functions in the immune system: phagocytosis, antigen presentation, and cytokine production. Since the globular heads of C1q within the membrane associated C1 are displayed outwardly, we hypothesize that their main function - especially in circulating monocytes - is to recognize and capture circulating immune complexes or pathogen-associated molecular patterns in the blood. This in turn may give crucial signal, which drives the monocytes to migrate into tissues, differentiate into macrophages or DCs, and initiate the process of antigen elimination. Unoccupied C1q on the other hand may serve to keep monocytes in a pre-dendritic phenotype by silencing key molecular players thus ensuring that unwarranted DC-driven immune response does not occur. In this paper, we will discuss the role of monocyte/DC-associated C1q receptors, macromolecular C1 as well as secreted C1q in both innate and acquired immune responses.

10.
Front Immunol ; 32012 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-22536204

RESUMO

Research conducted over the past 20 years have helped us unravel not only the hidden structural and functional subtleties of human C1q, but also has catapulted the molecule from a mere recognition unit of the classical pathway to a well-recognized molecular sensor of damage-modified self or non-self antigens. Thus, C1q is involved in a rapidly expanding list of pathological disorders - including autoimmunity, trophoblast migration, preeclampsia, and cancer. The results of two recent reports are provided to underscore the critical role C1q plays in health and disease. First is the observation by Singh et al. (2011) showing that pregnant C1q-/- mice recapitulate the key features of human preeclampsia that correlate with increased fetal death. Treatment of the C1q-/- mice with pravastatin restored trophoblast invasiveness, placental blood flow, and angiogenic balance and, thus, prevented the onset of preeclampsia. Second is the report by Hong et al. (2009) which showed that C1q can induce apoptosis of prostate cancer cells by activating the tumor suppressor molecule WW-domain containing oxydoreductase (WWOX or WOX1) and destabilizing cell adhesion. Downregulation of C1q on the other hand, enhanced prostate hyperplasia and cancer formation due to failure of WOX1 activation. C1q belongs to a family of structurally and functionally related TNF-α-like family of proteins that may have arisen from a common ancestral gene. Therefore C1q not only shares the diverse functions with the tumor necrosis factor family of proteins, but also explains why C1q has retained some of its ancestral "cytokine-like" activities. This review is intended to highlight some of the structural and functional aspects of C1q by underscoring the growing list of its non-traditional functions.

11.
Front Immunol ; 3: 38, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22566921

RESUMO

The synthesis of the subunits of the C1 complex (C1q, C1s, C1r), and its regulator C1 inhibitor (C1-Inh) by human monocytes has been previously established. However, surface expression of these molecules by monocytes has not been shown. Using flow cytometry and antigen-capture enzyme-linked immunosorbent assay, we show here for the first time that, in addition to C1q, peripheral blood monocytes, and the monocyte-derived U937 cells express C1s and C1r, as well as Factor B and C1-Inh on their surface. C1s and C1r immunoprecipitated with C1q, suggesting that at least some of the C1q on these cells is part of the C1 complex. Furthermore, the C1 complex on U937 cells was able to trigger complement activation via the classical pathway. The presence of C1-Inh may ensure that an unwarranted autoactivation of the C1 complex does not take place. Since C1-Inh closely monitors the activation of the C1 complex in a sterile or infectious inflammatory environment, further elucidation of the role of C1 complex is crucial to dissect its function in monocyte, dendritic cell, and T cell activities, and its implications in host defense and tolerance.

12.
Front Immunol ; 22011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22282702

RESUMO

The endothelial cell receptor complex for kininogen (HK) comprises gC1qR, cytokeratin 1, and urokinase-type plasminogen activator receptor and is essential for activation of the kinin system that leads to bradykinin (BK) generation. Of these, gC1qR/p33 constitutes a high affinity site for HK - the BK precursor - and is therefore critical for the assembly of the kinin-generating cascade. Previous studies have identified a putative HK site within the C-terminal domain (residues 204-218) of gC1qR recognized by mAb 74.5.2. In these studies, we used information from the crystal structure of gC1qR, to engineer several deletion (Δ) mutants and test their ability to bind and/or support BK generation. While deletion of residues 204-218 (gC1qRΔ204-218), showed significantly reduced binding to HK, BK generation was not affected when tested by a sensitive bradykinin immunoassay. In fact, all of the gC1qR deletion mutants supported BK generation with the exception of gC1qRΔ154-162 and a point mutation in which Trp 233 was substituted with Gly. Binding studies also identified the existence of two additional sites at residues 144-162 and 190-202. Moreover, binding of HK to a synthetic peptide 190-202 was inhibited by mAbs 48 and 83, but not by mAb 74.5.2. Since a single residue separates domains 190-202 and 204-218, they may be part of a highly stable HK binding pocket and therefore a potential target for drug design to prevent vascular permeability and inflammation.

13.
Innate Immun ; 16(2): 115-27, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19710097

RESUMO

Growing evidence shows that C1q modulates the growth and function of cells committed to the monocyte-derived dendritic cell (DC) lineage. Because C1q regulates both innate and acquired immune responses, we postulated that C1q modulates the transition from monocytes to DCs, i.e. the interface between innate and acquired immunity. Human peripheral blood monocytes cultured with soluble C1q and DC growth factors (granulocyte-macrophage colony-stimulating factor + Interleukin-4) failed to down-regulate monocyte-associated (CD14, CD16) and up-regulate DC-associated (CD83, CD86) markers. Impaired DC differentiation was not due to apoptosis; further analysis revealed the development of CD14(hi)CD11c(hi)CD16 (+/-) cells that have previously been associated with both innate and acquired immunity. Monocyte-DC precursors expressed gC1qR, the receptor for globular heads of C1q, from the outset, while cC1qR, the receptor for the collagen tails of C1q, was expressed at low levels. Notably, the binding pattern of monoclonal antibodies specific to the globular heads of C1q indicated that C1q is bound to monocytes via globular heads, presumably through gC1qR. Moreover, gC1qR levels decreased, while cC1qR levels were dramatically amplified as monocytes differentiated into immature DC. Thus, specific C1q/C1q receptor (R) interactions may control the transition from the monocyte state (innate immunity) toward the professional antigen-presenting cell state (adaptive immunity).


Assuntos
Imunidade Adaptativa , Complemento C1q/farmacologia , Células Dendríticas/metabolismo , Glicoproteínas de Membrana/biossíntese , Receptores de Complemento/biossíntese , Antígenos CD/biossíntese , Antígenos CD/genética , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/patologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Imunidade Inata , Interleucina-4/farmacologia , Glicoproteínas de Membrana/genética , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Receptores de Complemento/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa