Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Am Chem Soc ; 146(42): 28669-28676, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39403745

RESUMO

Fused in sarcoma (FUS), a multifunctional deoxyribonucleic acid (DNA)/ribonucleic acid (RNA)-binding protein, has been implicated in various cancer types, including sarcoma and leukemia. Despite its association with these diseases, there has been limited exploration of FUS as a cancer therapy target, primarily because its dynamic nature makes it difficult to target specifically. In this study, we explored a kind of ß-sheet peptide foldamer, named ß4-TAT, to influence FUS aggregation by targeting its RNA recognition motifs (RRM). This approach leverages the noncovalent interaction characteristics of peptide self-assembly processes. The ß4 sequence, derived from the FUS RRM ß-sheet, in combination with TAT, a peptide known for its nuclear targeting capability, enables ß4-TAT to bind specifically to the analogous ß4 sequence within FUS. Notably, ß4-TAT effectively induces FUS aggregation within cells, leading to the death of cancer cells. Our work developed a novel peptide foldamer-based strategy for inducing protein aggregation, paving the way for innovative therapeutic approaches in targeting FUS-associated cancers.


Assuntos
Peptídeos , Proteína FUS de Ligação a RNA , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/metabolismo , Humanos , Peptídeos/química , Peptídeos/farmacologia , Agregados Proteicos/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral
2.
Small ; 20(13): e2306699, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37963830

RESUMO

Engineered macrophages are a promising tool for drug delivery and immunotherapy in cancer treatment. However, simultaneous targeted enrichment and controllable immunological activation of these macrophages at the tumor site remains challenging. As a solution, macrophages loaded with an advanced nanoparticle encapsulating CpG-conjugated magnetic nanoclusters (MNC) with indocyanine green (ICG) and nigericin (NIG) (MNC-ICG-NIG@SiO2 (MINS)), utilizing Se─Se bond-modified SiO2, are designed and applied in bladder cancer, which is typically managed surgically, followed by Bacillus Calmette-Guerin (BCG) adjuvant instillation therapy. Upon intravenous administration, BCG-mediated tumor-localized inflammation leads to targeted accumulation of MINS@MΦ. MINS@MΦ accumulates within the tumor tissue and is immunologically activated through laser irradiation, leading to ICG-mediated generation of reactive oxygen species, Se─Se bond cleavage, and subsequent NIG release to induce self-pyroptosis. Consequently, MINS@MΦ releases Fe2+ ions and CpG, thus promoting the M1 polarization of tumor-associated macrophages and secretion of appropriate antitumor cytokines. However, without intervention, MINS@MΦ undergoes apoptosis in the bloodstream after 48 h without eliciting any immune response. Therefore, this innovative approach optimizes and enhances the efficacy of BCG immunotherapy by precisely modulating the cytokines for effective bladder cancer treatment without inducing a systemic inflammatory response.


Assuntos
Mycobacterium bovis , Neoplasias da Bexiga Urinária , Humanos , Citocinas , Piroptose , Vacina BCG/uso terapêutico , Dióxido de Silício , Macrófagos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Imunoterapia
3.
Small ; 20(35): e2310416, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38660815

RESUMO

Synergistic therapy has shown greater advantages compared with monotherapy. However, the complex multiple-administration plan and potential side effects limit its clinical application. A transformable specific-responsive peptide (TSRP) is utilized to one-step achieve synergistic therapy integrating anti-tumor, anti-angiogenesis and immune response. The TSRP is composed of: i) Recognition unit could specifically target and inhibit the biological function of FGFR-1; ii) Transformable unit could self-assembly and trigger nanofibers formation; iii) Reactive unit could specifically cleaved by MMP-2/9 in tumor micro-environment; iv) Immune unit, stimulate the release of immune cells when LTX-315 (Immune-associated oncolytic peptide) exposed. Once its binding to FGFR-1, the TSRP could cleaved by MMP-2/9 to form the nanofibers on the cell membrane, with a retention time of up to 12 h. Through suppressing the phosphorylation levels of ERK 1/2 and PI3K/AKT signaling pathways downstream of FGFR-1, the TSRP significant inhibit the growth of tumor cells and the formation of angioginesis. Furthermore, LTX-315 is exposed after TSRP cleavage, resulting in Calreticulin activation and CD8+ T cells infiltration. All above processes together contribute to the increasing survival rate of tumor-bearing mice by nearly 4-folds. This work presented a unique design for the biological application of one-step synergistic therapy of bladder cancer.


Assuntos
Peptídeos , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Animais , Humanos , Linhagem Celular Tumoral , Peptídeos/química , Peptídeos/farmacologia , Camundongos , Nanofibras/química
4.
Eur J Nucl Med Mol Imaging ; 51(13): 4165-4176, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39060372

RESUMO

PURPOSE: The incomplete resection of non-muscle invasive bladder cancer (NMIBC) augments the risk of disease recurrence. Imaging-guided surgery by molecular probes represents a pivotal strategy for mitigating postoperative recurrence. Traditional optical molecular probes, primarily composed of antibodies/peptides targeting tumour cells and fluorescent groups, are challenged by the high heterogeneity of NMIBC cells, leading to inadequate probe sensitivity. We have developed a collagen-adhesive probe (CA-P) to target the collagen within the tumour microenvironment, aiming to address the issue of insufficient imaging sensitivity. METHODS: The distribution characteristics of collagen in animal bladder cancer models and human bladder cancer tissues were explored. The synthesis and properties of CA-P were validated. In animal models, the imaging performance of CA-P was tested and compared with our previously reported near-infrared probe PLSWT7-DMI. The clinical translational potential of CA-P was assessed using human ex vivo bladder tissues. RESULTS: The distribution of collagen on the surface of tumour cells is distinct from its expression in normal urothelium. In vitro studies have demonstrated the ability of the CA-P to undergo a "sol-gel" transition upon interaction with collagen. In animal models and human ex vivo bladder specimens, CA-P exhibits superior imaging performance compared to PLSWT7-DMI. The sensitivity of this probe is 94.1%, with a specificity of 81%. CONCLUSION: CA-P demonstrates the capability to overcome tumour cell heterogeneity and enhance imaging sensitivity, exhibiting favorable imaging outcomes in preclinical models. These findings provide a theoretical basis for the application of CA-P in intraoperative navigation for NMIBC.


Assuntos
Colágeno , Hidrogéis , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/cirurgia , Animais , Humanos , Camundongos , Hidrogéis/química , Colágeno/química , Linhagem Celular Tumoral , Sondas Moleculares/química , Período Intraoperatório
5.
Nano Lett ; 22(20): 8076-8085, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36135098

RESUMO

Nanomaterials (NMs) inevitably adsorb proteins in blood and form "protein corona" upon intravenous administration as drug carriers, potentially changing the biological properties and intended functions. Inspired by anti-adhesion properties of natural proteins, herein, we employed the one-bead one-compound (OBOC) combinatorial peptide library method to screen anti-adhesion peptides (AAPs) against proteins. The library beads displaying random peptides were screened with three fluorescent-labeled plasma proteins. The nonfluorescence beads, presumed to have anti-adhesion property against the proteins, were isolated for sequence determination. These identified AAPs were coated on gold nanorods (GNRs), enabling significant extension of the blood circulating half-life of these GNRs in mice to 37.8 h, much longer than that (26.6 h) of PEG-coated GNRs. In addition, such AAP coating was found to alter the biodistribution profile of GNRs in mice. The bioinspired screening strategy and resulting peptides show great potential for enhancing the delivery efficiency and targeting ability of NMs.


Assuntos
Nanoestruturas , Biblioteca de Peptídeos , Camundongos , Animais , Técnicas de Química Combinatória/métodos , Distribuição Tecidual , Peptídeos/farmacologia , Peptídeos/química , Proteínas Sanguíneas , Administração Intravenosa , Ouro , Portadores de Fármacos
6.
Nano Lett ; 22(10): 3983-3992, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35548949

RESUMO

Lysosome-targeting self-assembling prodrugs had emerged as an attractive approach to overcome the acquisition of resistance to chemotherapeutics by inhibiting lysosomal sequestration. Taking advantage of lysosomal acidification induced intracellular hydrolytic condensation, we developed a lysosomal-targeting self-condensation prodrug-nanoplatform (LTSPN) system for overcoming lysosome-mediated drug resistance. Briefly, the designed hydroxycamptothecine (HCPT)-silane conjugates self-assembled into silane-based nanoparticles, which were taken up into lysosomes by tumor cells. Subsequently, the integrity of the lysosomal membrane was destructed because of the acid-triggered release of alcohol, wherein the nanoparticles self-condensed into silicon particles outside the lysosome through intracellular hydrolytic condensation. Significantly, the LTSPN system reduced the half-maximal inhibitory concentration (IC50) of HCPT by approximately 4 times. Furthermore, the LTSPN system realized improved control of large established tumors and reduced regrowth of residual tumors in several drug-resistant tumor models. Our findings suggested that target destructing the integrity of the lysosomal membrane may improve the therapeutic effects of chemotherapeutics, providing a potent treatment strategy for malignancies.


Assuntos
Nanopartículas , Neoplasias , Pró-Fármacos , Linhagem Celular Tumoral , Resistência a Medicamentos , Humanos , Lisossomos/patologia , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Silanos/farmacologia , Silanos/uso terapêutico
7.
Angew Chem Int Ed Engl ; 62(37): e202308049, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37486792

RESUMO

Proteolysis targeting chimera (PROTAC) is an emerging pharmacological modality with innovated post-translational protein degradation capabilities. However, off-target induced unintended tissue effects and intrinsic "hook effect" hinder PROTAC biotechnology to be maturely developed. Herein, an intracellular fabricated nano proteolysis targeting chimeras (Nano-PROTACs) modality with a center-spoke degradation network for achieving efficient dose-dependent protein degradation in tumor is reported. The PROTAC precursors are triggered by higher GSH concentrations inside tumor cells, which subsequently in situ self-assemble into Nano-PROTACs through intermolecular hydrogen bond interactions. The fibrous Nano-PROTACs can form effective polynary complexes and E3 ligases degradation network with multi-binding sites, achieving dose-dependent protein degradation with "anti-hook effect". The generality and efficacy of Nano-PROTACs are validated by degrading variable protein of interest (POI) such as epidermal growth factor receptor (EGFR) and androgen receptor (AR) in a wide-range dose-dependent manner with a 95 % degradation rate and long-lasting potency up to 72 h in vitro. Significantly, Nano-PROTACs achieve in vivo dose-dependent protein degradation up to 79 % and tumor growth inhibition in A549 and LNCap xenograft mice models, respectively. Taking advantages of in situ self-assembly strategy, the Nano-PROTACs provide a generalizable platform to promote precise clinical translational application of PROTAC.


Assuntos
Neoplasias , Ubiquitina-Proteína Ligases , Humanos , Animais , Camundongos , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Proteínas/metabolismo , Sítios de Ligação
8.
Nano Lett ; 21(14): 6202-6210, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34259530

RESUMO

Life is recognized as a sophisticated self-assembling material system. Cancer involves the overexpression and improper self-assembly of proteins, such as cytoskeleton protein vimentin, an emerging target related to tumor metastasis. Herein, we design a binding-induced fibrillogenesis (BIF) peptide that in situ forms fibrous networks, blocking the improper self-assembly of vimentin against cancer. The BIF peptide can bind to vimentin and subsequently perform fibrillogenesis to form fibers on vimentin. The resultant peptide fibrous network blocks vimentin skeletonization and inhibits the migration and invasion of tumor cells. In mouse models of tumor metastasis, the volume of tumor and the number of lung metastases are markedly decreased. Moreover, the efficacy of BIF peptide (5 mg/kg) is much higher than small molecular antimetastasis drug withaferin A (5 mg/kg) as a standard, indicating that the BIF peptide shows advantages over small molecular inhibitors in blocking the intracellular protein self-assembly.


Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Camundongos , Peptídeos , Vimentina/genética
9.
Angew Chem Int Ed Engl ; 61(18): e202116893, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35181975

RESUMO

Intravesical administration of first-line drugs has shown failure in the treatment of bladder cancer owing to the poor tumor retention time of chemotherapeutics. Herein, we report an intracellular hydrolytic condensation (IHC) system to construct long-term retentive nano-drug depots in situ, wherein sustained drug release results in highly efficient suppression of bladder cancer. Briefly, the designed doxorubicin (Dox)-silane conjugates self-assemble into silane-based prodrug nanoparticles, which condense into silicon particle-based nano-drug depots inside tumor cells. Significantly, we demonstrate that the IHC system possesses highly potent antitumor efficacy, which leads to the regression and eradication of large established tumors and simultaneously extends the overall survival of air pouch bladder cancer mice compared with that of mice treated with Dox. The concept of intracellular hydrolytic condensation can be extended via conjugating other chemotherapeutic drugs, which may facilitate rational design of novel nanomedicines for augmentation of chemotherapy.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias da Bexiga Urinária , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Masculino , Camundongos , Nanopartículas/uso terapêutico , Silanos , Neoplasias da Bexiga Urinária/tratamento farmacológico
10.
Angew Chem Int Ed Engl ; 60(14): 7809-7819, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33433945

RESUMO

The fabrication of functional assemblies with defined structures through controllable molecular packing under physiological conditions is challenging. Here, modularly designed peptide-cyanine conjugates that intracellularly self-assembly into 1D columnar superstructures with controlled cyanine aggregation were designed, and they exhibit distinct imaging or photothermal properties. The peptide backbone is cleaved by caspase-3/7 after entering the cells. Then the self-assembled residue, with a double cyanine substitution (Pr-2Cy), forms a P helical column in which H-aggregated cyanine dyes show 3.4-fold photothermal conversion efficiency compared to free ones. The self-assembled residue with a single cyanine substitution (Pr-1Cy) forms a loose column, in which cyanine dyes with undefined structure have a fluorescence quantum yield of up to 9.5 % (emission at 819 nm in H2 O). This work provides a simple way to modify in vivo self-assembled peptides with functional molecules for achieving desired bio-applications.


Assuntos
Carbocianinas/química , Corantes Fluorescentes/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Peptídeos/química , Peptídeos/metabolismo , Terapia Fototérmica/métodos , Sequência de Aminoácidos , Animais , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Humanos , Raios Infravermelhos , Camundongos , Conformação Molecular , Imagem Óptica , Multimerização Proteica
12.
Small ; 16(40): e2004548, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32881381

RESUMO

Tumor vasculature and cancer stem cells (CSCs) accelerate the development of metastatic renal cancer. Dual inhibition of vascular endothelium and CSCs is still a challenge due to their different pathological features. Herein, a transformable dual-inhibition system (TDS) based on a self-assembly peptide is proposed to construct nanofibrous barriers on the cell membrane in situ, which contributes to 1) reducing endothelial permeability and angiogenesis; and 2) inhibiting stemness and metastasis of CSCs in renal cancer. TDS specifically targets overexpressed receptor CD105 that provides the possibility to modulate both endothelial cells and CSCs for cancer therapy. Subsequently, owing to ligand-receptor interaction-induced transformation, the nanofibers form a barrier on the cell membrane. For vascular endothelium, TDS reduces the vascular permeability to 67.0% ± 4.7% and decreases angiogenesis to 62.0% ± 4.0%, thereby preventing the renal cancer metastasis. For human-derived CSCs, TDS inhibits stemness by reducing endogenic miR-19b and its transportation via CSCs-derived exosomes, which increases PTEN expression and consequently suppresses CSCs-mediated metastasis. In patient-derived xenograft mice, TDS significantly inhibits the tumorigenesis and angiogenesis. It also reduces the metastatic nodules in lung 5.0-fold compared with the control group. TDS opens up a promising avenue for suppressing the metastasis of cancer.


Assuntos
Neoplasias Renais , MicroRNAs , Animais , Linhagem Celular Tumoral , Células Endoteliais , Camundongos , Células-Tronco Neoplásicas , Transdução de Sinais
13.
J Am Chem Soc ; 141(18): 7235-7239, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31010287

RESUMO

The morphology controlled molecular assemblies play vital roles in biological systems. Here we present endogenous reactive oxygen species (ROS)-triggered morphology transformation of polymer-peptide conjugates (PPCs) for cooperative interaction with mitochondria, exhibiting high tumor therapeutic efficacy. The PPCs are composed of (i) a ß-sheet-forming peptide KLVFF conjugated with poly(ethylene glycol) through ROS-cleavable thioketal, (ii) a mitochondria-targeting cytotoxic peptide KLAK, and (iii) a poly(vinyl alcohol) backbone. The self-assembled PPCs nanoparticles can enter cells and target mitochondria. Because of overgenerated ROS around mitochondria in most cancer cells, the thioketal linker can be cleaved, leading to transformation from nanoparticles to fibrous nanostructures. As a result, the locational nanofibers with exposure of KLAK exhibit enhanced multivalent cooperative interactions with mitochondria, which causes selective cytotoxicity against cancer cells and powerful tumor suppression efficacy in vivo. As the first example of ROS-triggered intracellular transformation, the locational assembly strategy in vivo may provide a new insight for disease diagnosis and therapy through enhanced interaction with targeting site.


Assuntos
Antineoplásicos/metabolismo , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Álcool de Polivinil/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Camundongos , Mitocôndrias/química , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Imagem Óptica , Peptídeos/química , Peptídeos/farmacologia , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , Espécies Reativas de Oxigênio/química
14.
Mol Cancer ; 18(1): 86, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975145

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (CCRCC) is characterized by a highly metastatic potential. The stromal communication between stem cells and cancer cells critically influences metastatic dissemination of cancer cells. METHODS: The effect of exosomes isolated from cancer stem cells (CSCs) of CCRCC patients on the progress of epithelial-mesenchymal transition (EMT) and lung metastasis of CCRCC cells were examined. RESULTS: CSCs exosomes promoted proliferation of CCRCC cells and accelerated the progress of EMT. Bioactive miR-19b-3p transmitted to cancer cells by CSC exosomes induced EMT via repressing the expression of PTEN. CSCs exosomes derived from CCRCC patients with lung metastasis produced the strongest promoting effect on EMT. Notably, CD103+ CSC exosomes were enriched in tumor cells and in lung as well, highlighting the organotropism conferred by CD103. In addition, CD103+ exosomes were increased in blood samples from CCRCC patients with lung metastasis. CONCLUSIONS: CSC exosomes transported miR-19b-3p into CCRCC cells and initiated EMT promoting metastasis. CD103+ acted to guide CSC exosomes to target cancer cells and organs, conferring the higher metastatic capacity of CCRCC to lungs, suggesting CD103+ exosomes as a potential metastatic diagnostic biomarker. ᅟ.


Assuntos
Antígenos CD/genética , Carcinoma de Células Renais/genética , Exossomos/metabolismo , Cadeias alfa de Integrinas/genética , Neoplasias Renais/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Animais , Antígenos CD/metabolismo , Transporte Biológico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/secundário , Comunicação Celular , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Exossomos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Cadeias alfa de Integrinas/metabolismo , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Metástase Linfática , Camundongos Nus , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais , Células Estromais/metabolismo , Células Estromais/patologia , Microambiente Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
15.
ACS Biomater Sci Eng ; 10(9): 5474-5495, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39171865

RESUMO

Cancer remains a significant challenge in extending human life expectancy in the 21st century, with staggering numbers projected by the International Agency for Research on Cancer for upcoming years. While conventional cancer therapies exist, their limitations, in terms of efficacy and side effects, demand the development of novel treatments that selectively target cancer cells. Tumor immunotherapy has emerged as a promising approach, but low response rates and immune-related side effects present significant clinical challenges. Researchers have begun combining immunotherapy with nanomaterials to optimize tumor-killing effects. Stimuli-responsive nanomaterials have become a focus of cancer immunotherapy research due to their unique properties. These nanomaterials target specific signals in the tumor microenvironment, such as pH or temperature changes, to precisely deliver therapeutic agents and minimize damage to healthy tissue. This article reviews the recent developments and clinical applications of endogenous and exogenous stimuli-responsive nanomaterials for tumor immunotherapy, analyzing the advantages and limitations of these materials and highlighting their potential for enhancing the immune response to cancer and improving patient outcomes.


Assuntos
Imunoterapia , Nanoestruturas , Neoplasias , Microambiente Tumoral , Humanos , Imunoterapia/métodos , Neoplasias/terapia , Neoplasias/imunologia , Nanoestruturas/uso terapêutico , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Concentração de Íons de Hidrogênio
16.
Biomaterials ; 308: 122550, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38581762

RESUMO

Immune checkpoint blockade therapy represented by programmed cell death ligand 1 (PD-L1) inhibitor for advanced renal carcinoma with an objective response rate (ORR) in patients is less than 20%. It is attributed to abundant tumoral vasculature with abnormal structure limiting effector T cell infiltration and drug penetration. We propose a bispecific fibrous glue (BFG) to regulate tumor immune and vascular microenvironments simultaneously. The bispecific precursor glue peptide-1 (pre-GP1) can penetrate tumor tissue deeply and self-assemble into BFG in the presence of neuropilin-1 (NRP-1) and PD-L1. The resultant fibrous glue is capable of normalizing tumoral vasculature as well as restricting immune escape. The pre-GP1 retains a 6-fold higher penetration depth than that of antibody in the multicellular spheroids (MCSs) model. It also shows remarkable tumor growth inhibition (TGI) from 19% to 61% in a murine advanced large tumor model compared to the clinical combination therapy. In addition, in the orthotopic renal tumor preclinical model, the lung metastatic nodules are reduced by 64% compared to the clinically used combination. This pre-GP1 provides a promising strategy to control the progression and metastasis of advanced renal carcinoma.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Neoplasias Renais/patologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/terapia , Neoplasias Renais/imunologia , Humanos , Camundongos , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/terapia , Carcinoma de Células Renais/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Feminino , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo
17.
Natl Sci Rev ; 11(4): nwae028, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38425424

RESUMO

Mitochondriopathy inspired adenosine triphosphate (ATP) depletions have been recognized as a powerful way for controlling tumor growth. Nevertheless, selective sequestration or exhaustion of ATP under complex biological environments remains a prodigious challenge. Harnessing the advantages of in vivo self-assembled nanomaterials, we designed an Intracellular ATP Sequestration (IAS) system to specifically construct nanofibrous nanostructures on the surface of tumor nuclei with exposed ATP binding sites, leading to highly efficient suppression of bladder cancer by induction of mitochondriopathy-like damages. Briefly, the reported transformable nucleopeptide (NLS-FF-T) self-assembled into nuclear-targeted nanoparticles with ATP binding sites encapsulated inside under aqueous conditions. By interaction with KPNA2, the NLS-FF-T transformed into a nanofibrous-based ATP trapper on the surface of tumor nuclei, which prevented the production of intracellular energy. As a result, multiple bladder tumor cell lines (T24, EJ and RT-112) revealed that the half-maximal inhibitory concentration (IC50) of NLS-FF-T was reduced by approximately 4-fold when compared to NLS-T. Following intravenous administration, NLS-FF-T was found to be dose-dependently accumulated at the tumor site of T24 xenograft mice. More significantly, this IAS system exhibited an extremely antitumor efficacy according to the deterioration of T24 tumors and simultaneously prolonged the overall survival of T24 orthotopic xenograft mice. Together, our findings clearly demonstrated the therapeutic advantages of intracellular ATP sequestration-induced mitochondriopathy-like damages, which provides a potential treatment strategy for malignancies.

18.
Nat Commun ; 15(1): 454, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212623

RESUMO

Emerging evidence indicates that the activation of ferroptosis by glutathione peroxidase 4 (GPX4) inhibitors may be a prominent therapeutic strategy for tumor suppression. However, the wide application of GPX4 inhibitors in tumor therapy is hampered due to poor tumor delivery efficacy and the nonspecific activation of ferroptosis. Taking advantage of in vivo self-assembly, we develop a peptide-ferriporphyrin conjugate with tumor microenvironment specific activation to improve tumor penetration, endocytosis and GPX4 inhibition, ultimately enhancing its anticancer activity via ferroptosis. Briefly, a GPX4 inhibitory peptide is conjugated with an assembled peptide linker decorated with a pH-sensitive moiety and ferriporphyrin to produce the peptide-ferriporphyrin conjugate (Gi-F-CAA). Under the acidic microenvironment of the tumor, the Gi-F-CAA self-assembles into large nanoparticles (Gi-F) due to enhanced hydrophobic interaction after hydrolysis of CAA, improving tumor endocytosis efficiency. Importantly, Gi-F exhibits substantial inhibition of GPX4 activity by assembly enhanced binding (AEB) effect, augmenting the oxidative stress of ferriporphyrin-based Fenton reaction, ultimately enabling antitumor properties in multiple tumor models. Our findings suggest that this peptide-ferriporphyrin conjugate design with AEB effect can improve the therapeutic effect via induction of ferroptosis, providing an alternative strategy for overcoming chemoresistance.


Assuntos
Ferroptose , Neoplasias , Humanos , Endocitose , Hemina , Hidrólise , Peptídeos/farmacologia , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Microambiente Tumoral
19.
Adv Healthc Mater ; 12(27): e2301162, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37449948

RESUMO

Bioactive macromolecules show great promise for the treatment of various diseases. However, the cytosolic delivery of peptide-based drugs remains a challenging task owing to the existence of multiple intracellular barriers and ineffective endosomal escape. To address these issues, herein, programmable self-assembling peptide vectors are reported to amplify cargo internalization into the cytoplasm through receptor-activated macropinocytosis. Programmable self-assembling peptide vector-active human epidermal growth factor receptor-2 (HER2) signaling induces the receptor-activated macropinocytosis pathway, achieving efficient uptake in tumor cells. Shrinking macropinosomes accelerate the process of assembly dynamics and form nanostructures in the cytoplasm to increase peptide-based cargo accumulation and retention. Inductively coupled plasma mass (ICP-MS) spectrometry quantitative analysis indicates that the Gd delivery efficiency in tumor tissue through the macropinocytosis pathway is improved 2.5-fold compared with that through the use of active targeting molecular delivery. Finally, compared with nanoparticles and active targeting delivery, the delivery of bioactive peptide drugs through the self-assembly of peptide vectors maintains high drug activity (the IC50 decreased twofold) in the cytoplasm and achieves effective inhibition of tumor cell growth. Programmable self-assembling peptide vectors represent a promising platform for the intracellular delivery of diverse bioactive drugs, including molecular drugs, peptides, and biologics.


Assuntos
Nanoestruturas , Peptídeos , Humanos , Peptídeos/química , Pinocitose , Citosol/metabolismo , Endossomos/metabolismo , Proteínas de Transporte/metabolismo
20.
Adv Mater ; 35(35): e2210732, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37172955

RESUMO

Missed or residual tumor burden results in high risk for bladder cancer relapse. However, existing fluorescent probes cannot meet the clinical needs because of inevitable photobleaching properties. Performance can be improved by maintaining intensive and sustained fluorescence signals via resistance to intraoperative saline flushing and intrinsic fluorescent decay, providing surgeons with sufficiently clear and high-contrast surgical fields, avoiding residual tumors or missed diagnosis. This study designs and synthesizes a photostable cascade-activatable peptide, a target reaction-induced aggregation peptide (TRAP) system, which can construct polypeptide-based nanofibers in situ on the cell membrane to achieve long-term and stable imaging of bladder cancer. The probe has two parts: a target peptide (TP) targets CD44v6 to recognize bladder cancer cells, and a reaction-induced aggregation peptide (RAP) is introduced, which effectively reacts with the TP via a click reaction to enhance the hydrophobicity of the whole molecule, assembling into nanofibers and further nanonetworks. Accordingly, probe retention on the cell membrane is prolonged, and photostability is significantly improved. Finally, the TRAP system is successfully employed in the high-performance identification of human bladder cancer in ex vivo bladder tumor tissues. This cascade-activatable peptide molecular probe based on the TRAP system enables efficient and stable imaging of bladder cancer.


Assuntos
Nanofibras , Neoplasias da Bexiga Urinária , Humanos , Recidiva Local de Neoplasia , Peptídeos/química , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Membrana Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa